Linear Algebra

Write your name:
Answer Key
(2 points).
In problems 1-5, circle the correct answer. (5 points per problem)

1. When A and B are matrices of size 4×6, the sum matrix $A+B$ is always equal to $B+A$. True False

Solution. True: Matrix addition is commutative. (The noncommutative operation is matrix multiplication.) The size of the matrices is irrelevant, as long as A and B have the same shape (ensuring that the sum makes sense).
2. If A is an invertible $n \times n$ matrix, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
True False

Solution. True: The determinant is a multiplicative function, so

$$
1=\operatorname{det}(I)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) .
$$

Therefore $\operatorname{det}(A)$ and $\operatorname{det}\left(A^{-1}\right)$ are reciprocals.
3. For every $n \times n$ matrix A, the product matrix $A^{T} A$ is a symmetric matrix.

True False
Solution. True: A matrix is symmetric if and only if it equals its transpose. Now the transpose of a product is the product of the transposes in reverse order, so

$$
\left(A^{T} A\right)^{T}=A^{T}\left(A^{T}\right)^{T}=A^{T} A
$$

Thus the matrix $A^{T} A$ is indeed equal to its transpose.
4. If A is a 4×3 matrix, and one of the columns of A has all its entries equal to 0 , then the homogeneous linear system $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions. True False

Solution. True: If the first column (for instance) has all its entries equal to 0 , then every scalar multiple of the vector $(1,0,0)^{T}$ is in the null space of the matrix. Hence the homogeneous linear system has infinitely many solutions. Similar reasoning applies if one of the other columns has all its entries equal to 0 .

Math 304
Examination 1
Spring 2010

Linear Algebra

5. The polynomials $1+x, 1-x$, and $x+x^{2}$ form a spanning set for the vector space P_{3} (which consists of polynomials of degree less than or equal to 2). True False

Solution. True: It suffices to show that the polynomials $1, x$, and x^{2} are in the span of the given polynomials. Now $1=\frac{1}{2}[(1+x)+(1-x)]$, and $x=\frac{1}{2}[(1+x)-(1-x)]$, and $x^{2}=\frac{1}{2}[(1-x)-(1+x)]+\left(x+x^{2}\right)$.

Remark. If the true/false values were chosen at random, the probability of all five being true would be $1 / 32$, or about 3% : not very likely, but not out of the question.

In problems 6-9, fill in the blanks. (7 points per problem)
6. If $A=\left(\begin{array}{ccc}1 & 0 & 5 \\ 0 & 1 & 0 \\ \square & 0 & 1\end{array}\right)$, then $A^{-1}=\left(\begin{array}{ccc}1 & 0 & \square \\ 0 & 1 & 0 \\ \square & 0 & 1\end{array}\right)$.

Solution. The answer is

$$
A=\left(\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad A^{-1}=\left(\begin{array}{rrr}
1 & 0 & -5 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

How to find it? Since $A A^{-1}$ equals the identity matrix, using the rule for matrix multiplication to find the $(1,1)$ entry of the product shows that the missing entry in the lower left-hand corner of A^{-1} is 0 . Thus A^{-1} is upper triangular. Therefore A is upper triangular too, so its missing entry is 0 . Consequently, the matrix A is an elementary matrix corresponding to the row operation of adding 5 times the third row to the first row. Therefore A^{-1} is the inverse elementary matrix corresponding to subtracting 5 times the third row from the first row.
7. If $A=\left(\begin{array}{cc}\square & 5 \\ \square & \square\end{array}\right)$, then $A+A^{T}=\left(\begin{array}{cc}0 & 7 \\ \square & 0\end{array}\right)$.

Linear Algebra

Solution. The answer is $A=\left(\begin{array}{ll}0 & 5 \\ 2 & 0\end{array}\right)$ and $A+A^{T}=\left(\begin{array}{ll}0 & 7 \\ 7 & 0\end{array}\right)$.
How to find it? The matrix $A+A^{T}$ evidently is equal to its transpose, so the missing entry in this sum matrix is 7 . Now A and A^{T} have the same diagonal entries, so the diagonal entries of $A+A^{T}$ are twice the corresponding entries of A. Since $A+A^{T}$ has 0 on the diagonal, so must A. The remaining missing entry in A has to be 2 to make $A+A^{T}$ have the indicated form.
8. A linearly independent spanning set for a vector space is called a Solution. A linearly independent spanning set is a basis.
9. The linear system $\left\{\begin{aligned} x_{1}-2 x_{2}+3 x_{3}-4 x_{4} & =5 \\ 2 x_{1}-4 x_{2}+6 x_{3}-8 x_{4} & =10\end{aligned} \quad\right.$ has how many solutions? \qquad
(none, one, or infinitely many?)

Solution. The second equation is twice the first equation, so the system effectively reduces to a single equation with three free variables. Hence there are infinitely many solutions.

Linear Algebra

In problems 10-12, show your work and explain your method.
(15 points per problem)
10. Determine the null space of the matrix $\left(\begin{array}{llll}0 & 2 & 1 & 8 \\ 2 & 0 & 1 & 0\end{array}\right)$.

Solution. Set up an augmented matrix and use Gaussian elimination:

$$
\begin{aligned}
& \left(\begin{array}{llll|l}
0 & 2 & 1 & 8 & 0 \\
2 & 0 & 1 & 0 & 0
\end{array}\right) \xrightarrow{R 1 \leftrightarrow R 2}\left(\begin{array}{llll|l}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 1 & 8 & 0
\end{array}\right) \\
& R 1 \rightarrow \frac{1}{2} R 1 \\
& \hline
\end{aligned}
$$

From this reduced row-echelon form, you can read off that $x_{1}=-\frac{1}{2} x_{3}$, and $x_{2}=-\frac{1}{2} x_{3}-4 x_{4}$. Therefore the vectors $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)^{T}$ in the null space have the form

$$
\left(\begin{array}{c}
-\frac{1}{2} x_{3} \\
-\frac{1}{2} x_{3}-4 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right), \quad \text { or } \quad x_{3}\left(\begin{array}{r}
-\frac{1}{2} \\
-\frac{1}{2} \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{r}
0 \\
-4 \\
0 \\
1
\end{array}\right),
$$

where x_{3} and x_{4} can take arbitrary values. In other words, the null space is the span of the vectors $(1,1,-2,0)^{T}$ and $(0,-4,0,1)^{T}$.
11. Determine a value of x for which

$$
\operatorname{det}\left(\begin{array}{rrrr}
0 & 0 & 0 & x \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-x & 0 & 0 & 8
\end{array}\right)=18
$$

Solution.

$$
\operatorname{det}\left(\begin{array}{rrrr}
0 & 0 & 0 & x \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-x & 0 & 0 & 8
\end{array}\right) \stackrel{R 1 \stackrel{\leftrightarrow}{=} R 4}{=} \operatorname{det}\left(\begin{array}{rrrr}
-x & 0 & 0 & 8 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & x
\end{array}\right) \stackrel{\text { form }}{=} 2 x^{2} .
$$

Thus $2 x^{2}=18$, or $x^{2}=9$, so $x= \pm 3$.

Linear Algebra

12. The equation below shows an $L U$ factorization. Fill in the missing entries, and explain your strategy for finding them.

Solution. Here is the answer:

$$
\left(\begin{array}{ccc}
1 & 5 & 0 \\
3 & 16 & 2 \\
0 & 4 & 9
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 4 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 5 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right) .
$$

How to find it? The rule for matrix multiplication shows that the entry in the upper left-hand corner of the matrix on the left-hand side equals 1. If you understand how the $L U$ factorization algorithm works, you can now immediately fill in the missing entries in the matrix on the right-hand side. The rule for matrix multiplication then forces the remaining missing entries on the diagonal of the matrix on the left-hand side.

Actually, you can solve the problem without knowing anything about the $L U$ algorithm. If you put letters in the missing boxes, multiply out the matrix product, and interpret the matrix equation as a linear system in the unknown letters, then you can solve by Gaussian elimination. This method takes a little longer but reaches the same goal.

