Write your **name**: ______ (2 points). In **problems 1–5**, circle the correct answer. (5 points per problem)

1. The equation $L(A) = A - A^T$ defines a linear operator L on the vector space of $n \times n$ matrices. True False

Solution. True. Taking the transpose is a linear operation, and so is subtraction. Explicitly, if A_1 and A_2 are two matrices, and c_1 and c_2 are scalars, then

$$L(c_1A_1 + c_2A_2) = (c_1A_1 + c_2A_2) - (c_1A_1 + c_2A_2)^T$$

= $(c_1A_1 + c_2A_2) - (c_1A_1^T + c_2A_2^T)$
= $c_1(A_1 - A_1^T) + c_2(A_2 - A_2^T)$
= $c_1L(A_1) + c_2L(A_2).$

Thus the transformation L does preserve linear combinations.

2. A 3 × 5 matrix B always has the same rank as the 5 × 3 matrix B^T . True False

Solution. True. The rank of B equals the dimension of the row space of B. An important theorem says that the rank of B also equals the dimension of the column space of B. But the column space of B is the row space of B^T , so the rank of B equals the rank of B^T .

3. If the linear system $A\mathbf{x} = \mathbf{b}$ is consistent, then the vector \mathbf{b} must belong to the null space of A^T . True False

Solution. False. The system is consistent if and only if the vector **b** belongs to R(A), the column space of A. This space equals the *orthogonal complement* of the null space of A^T .

Example: If $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, and $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, then the linear system $A\mathbf{x} = \mathbf{b}$ is consistent, and the null space of A^T is the span of the vector $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$, so \mathbf{b} does not belong to $N(A^T)$.

4. The transition matrix corresponding to a change of basis in \mathbb{R}^n must be an invertible matrix. True False

Solution. True. The inverse matrix corresponds to the inverse change of basis.

5. If the matrix representing a linear transformation $L: \mathbb{R}^n \to \mathbb{R}^n$ with respect to the standard basis has a row of zeroes, then one of the standard basis vectors belongs to the kernel of L. True False

Solution. False. One of the standard basis vectors belongs to the kernel of L if the matrix has a *column* of zeroes.

Example: The matrix $\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ has a row of zeroes, and the two standard basis vectors both have image equal to $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, so neither basis vector is in the kernel of the linear transformation. The kernel of the linear transformation is the span of the vector $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

In **problems 6–9**, fill in the blanks. (7 points per problem)

6. If A is a 30×4 matrix of rank 4, then dim N(A), the dimension of the

null space of A, equals ______.

Solution. According to the rank–nullity theorem, the dimension of the null space of A equals 4 - 4, or 0.

7. If L is the linear operator on R^2 that first reflects in the x-axis and then rotates by 45° counterclockwise, then the matrix representation of L (with respect to the standard basis) is

Solution. The first standard basis vector $\begin{pmatrix} 1\\ 0 \end{pmatrix}$ reflects to itself and then rotates to $\begin{pmatrix} \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} \end{pmatrix}$, which is the first column of the matrix. The second standard basis vector $\begin{pmatrix} 0\\ 1 \end{pmatrix}$ reflects to $\begin{pmatrix} 0\\ -1 \end{pmatrix}$ and then rotates to $\begin{pmatrix} \frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{2}} \end{pmatrix}$, which is the second column of the matrix. Thus the matrix representation of L is $\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$.

8. If A and B are $n \times n$ matrices, and there exists a nonsingular matrix S such that $B = S^{-1}AS$, then the matrices A and B are called

Solution. Such matrices A and B are *similar* matrices.

Solution. A unit vector in the direction of $\begin{pmatrix} 3\\4 \end{pmatrix}$ is $\begin{pmatrix} 3/5\\4/5 \end{pmatrix}$. The required vector projection is this unit vector multiplied by its scalar product with the vector $\begin{pmatrix} -1\\2 \end{pmatrix}$: namely,

$$\left\langle \begin{pmatrix} -1\\2 \end{pmatrix}, \begin{pmatrix} 3/5\\4/5 \end{pmatrix} \right\rangle \begin{pmatrix} 3/5\\4/5 \end{pmatrix} = \begin{pmatrix} 3/5\\4/5 \end{pmatrix}.$$

In **problems 10–12**, show your work and explain your method. (15 points per problem)

10. Suppose $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$. Determine a basis for $R(A^T)$, the range of the transpose of A.

Solution. The range of A^T is the column space of A^T , which is the same as the row space of A. Since the two rows of A evidently are linearly independent (they are not multiples of each other), the two rows of A already form a basis for the row space of A. Thus one basis for $R(A^T)$ is the pair of vectors $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ and $\begin{pmatrix} 4\\5\\6 \end{pmatrix}$.

Alternatively, you could compute the reduced row echelon form of A, which is $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$. The vectors $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ form a somewhat simpler basis for $R(A^T)$.

11. Find the distance in the x-y plane from the point (4, 1) to the line with equation 20x + 10y = 0.

Solution. The simplest method is to find the scalar projection of the vector $\begin{pmatrix} 4\\1 \end{pmatrix}$ onto the direction *orthogonal* to the line. In other words, compute the scalar product of the vector $\begin{pmatrix} 4\\1 \end{pmatrix}$ with a unit vector orthogonal to the line. One vector orthogonal to the line is $\begin{pmatrix} 20\\10 \end{pmatrix}$; a simpler vector in the same direction is $\begin{pmatrix} 2\\1 \end{pmatrix}$; a unit vector in the same direction is $\begin{pmatrix} 2\\1 \\ \sqrt{5} \end{pmatrix}$. Therefore the distance from the point to the line equals

$$\left\langle \begin{pmatrix} 4\\1 \end{pmatrix}, \begin{pmatrix} 2/\sqrt{5}\\1/\sqrt{5} \end{pmatrix} \right\rangle = 9/\sqrt{5}.$$

12. Suppose $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$ and $\mathbf{u}_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$, and let \mathbf{e}_1 and \mathbf{e}_2 denote the two standard basis vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Suppose that a linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$ is represented with respect to the basis $[\mathbf{u}_1, \mathbf{u}_2]$ by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Find the matrix representation of L with respect to the standard basis $[\mathbf{e}_1, \mathbf{e}_2]$.

Solution. If $S = \begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix}$, then S is the transition matrix from the **u**-basis to the standard basis. Therefore the required matrix representation is $(1 \quad 0)$

$$S\begin{pmatrix}1&0\\0&2\end{pmatrix}S^{-1}.$$

Now det(S) = -1, so $S^{-1} = \begin{pmatrix} -3 & 1 \\ 4 & -1 \end{pmatrix}$. Consequently, the matrix representation of L with respect to the standard basis equals

$$\begin{pmatrix} 1 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} -3 & 1 \\ 4 & -1 \end{pmatrix},$$

which works out to be the matrix $\begin{pmatrix} 5 & -1 \\ 12 & -2 \end{pmatrix}$.