Write your name: $\qquad$
In problems $\mathbf{1} \mathbf{- 5}$, circle the correct answer. ( 5 points per problem)

1. The equation $L(A)=A-A^{T}$ defines a linear operator $L$ on the vector space of $n \times n$ matrices. True False

Solution. True. Taking the transpose is a linear operation, and so is subtraction. Explicitly, if $A_{1}$ and $A_{2}$ are two matrices, and $c_{1}$ and $c_{2}$ are scalars, then

$$
\begin{aligned}
L\left(c_{1} A_{1}+c_{2} A_{2}\right) & =\left(c_{1} A_{1}+c_{2} A_{2}\right)-\left(c_{1} A_{1}+c_{2} A_{2}\right)^{T} \\
& =\left(c_{1} A_{1}+c_{2} A_{2}\right)-\left(c_{1} A_{1}^{T}+c_{2} A_{2}^{T}\right) \\
& =c_{1}\left(A_{1}-A_{1}^{T}\right)+c_{2}\left(A_{2}-A_{2}^{T}\right) \\
& =c_{1} L\left(A_{1}\right)+c_{2} L\left(A_{2}\right) .
\end{aligned}
$$

Thus the transformation $L$ does preserve linear combinations.
2. A $3 \times 5$ matrix $B$ always has the same rank as the $5 \times 3$ matrix $B^{T}$. True False

Solution. True. The rank of $B$ equals the dimension of the row space of $B$. An important theorem says that the rank of $B$ also equals the dimension of the column space of $B$. But the column space of $B$ is the row space of $B^{T}$, so the rank of $B$ equals the rank of $B^{T}$.
3. If the linear system $A \mathbf{x}=\mathbf{b}$ is consistent, then the vector $\mathbf{b}$ must belong to the null space of $A^{T}$. True False

Solution. False. The system is consistent if and only if the vector $\mathbf{b}$ belongs to $R(A)$, the column space of $A$. This space equals the orthogonal complement of the null space of $A^{T}$.
Example: If $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, and $\mathbf{b}=\binom{1}{1}$, then the linear system $A \mathbf{x}=\mathbf{b}$ is consistent, and the null space of $A^{T}$ is the span of the vector $\binom{-1}{1}$, so $\mathbf{b}$ does not belong to $N\left(A^{T}\right)$.

## Linear Algebra

4. The transition matrix corresponding to a change of basis in $R^{n}$ must be an invertible matrix. True False

Solution. True. The inverse matrix corresponds to the inverse change of basis.
5. If the matrix representing a linear transformation $L: R^{n} \rightarrow R^{n}$ with respect to the standard basis has a row of zeroes, then one of the standard basis vectors belongs to the kernel of $L$. True False

Solution. False. One of the standard basis vectors belongs to the kernel of $L$ if the matrix has a column of zeroes.
Example: The matrix $\left(\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right)$ has a row of zeroes, and the two standard basis vectors both have image equal to $\binom{0}{1}$, so neither basis vector is in the kernel of the linear transformation. The kernel of the linear transformation is the span of the vector $\binom{-1}{1}$.

In problems 6-9, fill in the blanks. (7 points per problem)
6. If $A$ is a $30 \times 4$ matrix of rank 4 , then $\operatorname{dim} N(A)$, the dimension of the null space of $A$, equals $\qquad$
Solution. According to the rank-nullity theorem, the dimension of the null space of $A$ equals $4-4$, or 0 .
7. If $L$ is the linear operator on $R^{2}$ that first reflects in the $x$-axis and then rotates by $45^{\circ}$ counterclockwise, then the matrix representation of $L$ (with respect to the standard basis) is

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \square \\
& \square
\end{array}\right)
$$

## Linear Algebra

Solution. The first standard basis vector $\binom{1}{0}$ reflects to itself and then rotates to $\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$, which is the first column of the matrix. The second standard basis vector $\binom{0}{1}$ reflects to $\binom{0}{-1}$ and then rotates to $\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}$, which is the second column of the matrix. Thus the matrix representation of $L$ is $\left(\begin{array}{rr}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right)$.
8. If $A$ and $B$ are $n \times n$ matrices, and there exists a nonsingular matrix $S$ such that $B=S^{-1} A S$, then the matrices $A$ and $B$ are called
$\qquad$

Solution. Such matrices $A$ and $B$ are similar matrices.
9. In $R^{2}$, the vector projection of $\binom{-1}{2}$ onto $\binom{3}{4}$ is the vector $\binom{\square}{\square}$.

Solution. A unit vector in the direction of $\binom{3}{4}$ is $\binom{3 / 5}{4 / 5}$. The required vector projection is this unit vector multiplied by its scalar product with the vector $\binom{-1}{2}$ : namely,

$$
\left\langle\binom{-1}{2},\binom{3 / 5}{4 / 5}\right\rangle\binom{ 3 / 5}{4 / 5}=\binom{3 / 5}{4 / 5} .
$$

## Linear Algebra

In problems 10-12, show your work and explain your method.
(15 points per problem)
10. Suppose $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$. Determine a basis for $R\left(A^{T}\right)$, the range of the transpose of $A$.

Solution. The range of $A^{T}$ is the column space of $A^{T}$, which is the same as the row space of $A$. Since the two rows of $A$ evidently are linearly independent (they are not multiples of each other), the two rows of $A$ already form a basis for the row space of $A$. Thus one basis for $R\left(A^{T}\right)$ is the pair of vectors $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ and $\left(\begin{array}{l}4 \\ 5 \\ 6\end{array}\right)$.
Alternatively, you could compute the reduced row echelon form of $A$, which is $\left(\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 2\end{array}\right)$. The vectors $\left(\begin{array}{r}1 \\ 0 \\ -1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$ form a somewhat simpler basis for $R\left(A^{T}\right)$.
11. Find the distance in the $x-y$ plane from the point $(4,1)$ to the line with equation $20 x+10 y=0$.

Solution. The simplest method is to find the scalar projection of the vector $\binom{4}{1}$ onto the direction orthogonal to the line. In other words, compute the scalar product of the vector $\binom{4}{1}$ with a unit vector orthogonal to the line. One vector orthogonal to the line is $\binom{20}{10}$; a simpler vector in the same direction is $\binom{2}{1}$; a unit vector in the same direction is $\binom{2 / \sqrt{5}}{1 / \sqrt{5}}$. Therefore the distance from the point to the line equals

$$
\left\langle\binom{ 4}{1},\binom{2 / \sqrt{5}}{1 / \sqrt{5}}\right\rangle=9 / \sqrt{5} .
$$

## Linear Algebra

12. Suppose $\mathbf{u}_{1}=\binom{1}{4}$ and $\mathbf{u}_{2}=\binom{1}{3}$, and let $\mathbf{e}_{1}$ and $\mathbf{e}_{2}$ denote the two standard basis vectors $\binom{1}{0}$ and $\binom{0}{1}$. Suppose that a linear transformation $L: R^{2} \rightarrow R^{2}$ is represented with respect to the basis $\left[\mathbf{u}_{1}, \mathbf{u}_{2}\right]$ by the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. Find the matrix representation of $L$ with respect to the standard basis $\left[\mathbf{e}_{1}, \mathbf{e}_{2}\right]$.

Solution. If $S=\left(\begin{array}{ll}1 & 1 \\ 4 & 3\end{array}\right)$, then $S$ is the transition matrix from the $\mathbf{u}$-basis to the standard basis. Therefore the required matrix representation is

$$
S\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) S^{-1}
$$

Now $\operatorname{det}(S)=-1$, so $S^{-1}=\left(\begin{array}{rr}-3 & 1 \\ 4 & -1\end{array}\right)$. Consequently, the matrix representation of $L$ with respect to the standard basis equals

$$
\left(\begin{array}{ll}
1 & 1 \\
4 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
-3 & 1 \\
4 & -1
\end{array}\right)
$$

which works out to be the matrix $\left(\begin{array}{rr}5 & -1 \\ 12 & -2\end{array}\right)$.

