Write your name:
In problems $\mathbf{1 - 5}$, circle the correct answer. (5 points per problem)

1. Every linearly independent set of three vectors in R^{3} is a basis for R^{3}.
True False

Solution. True. Three linearly independent vectors span a threedimensional space, hence all of R^{3}. A linearly independent spanning set is a basis.
2. For $n \times n$ matrices A and B, the determinant of the product $A B$ always equals the determinant of $B A$. True False

Solution. True. The determinant is a multiplicative function: namely, $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Similarly, $\operatorname{det}(B A)=\operatorname{det}(B) \operatorname{det}(A)$. But $\operatorname{det}(B) \operatorname{det}(A)=\operatorname{det}(A) \operatorname{det}(B)$ because multiplication of numbers is commutative (although multiplication of matrices is not commutative).
3. Every orthogonal 3×3 matrix has rank 3 . True False

Solution. True. Being an orthonormal set, the columns of an orthogonal matrix are a linearly independent set. Hence the dimension of the column space (which equals the rank) equals 3 .
4. In an inner product space, $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$ for all vectors \mathbf{u} and \mathbf{v}.

True False

Solution. False. The indicated property holds if and only if the vectors \mathbf{u} and \mathbf{v} are orthogonal.
5. If L is a linear transformation mapping R^{3} into R^{2}, then there is a 2×3 matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for every vector \mathbf{x} in R^{3}.

```
True False
```

Solution. True. This statement is a special case of the fundamental matrix representation of a linear transformation (Theorem 4.2.1 on page 185).

Linear Algebra

In problems 6-9, fill in the blanks. (7 points per problem)
6. If A is a square matrix, λ is a scalar, and \mathbf{x} is a nonzero vector such that $A \mathbf{x}=\lambda \mathbf{x}$, then \mathbf{x} is called \qquad .

Solution. Such a vector is an eigenvector of the matrix A.
7. $\operatorname{det}\left(\begin{array}{ccc}3 & 0 & 4 \\ 5 & 0 & 2 \\ 8 & \square & 6\end{array}\right)=28$.

Solution. A cofactor expansion on the middle column shows that the missing number x has the property that $-x\left|\begin{array}{ll}3 & 4 \\ 5 & 2\end{array}\right|=28$, or $14 x=28$, or $x=2$.
8. Vectors $\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\left(\begin{array}{l}\square \\ \square \\ \square\end{array}\right)$ form an orthonormal basis for R^{3}.

Solution. The two possible answers are $\pm\left(\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right)$.
9. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$, then $\operatorname{dim} N(A)$, the nullity of A, equals

Solution. Since there is only one linearly independent row, the matrix has rank 1. By the rank-nullity theorem, the nullity equals 2 .

Linear Algebra

In problems 10-12, show your work and explain your method.
(15 points per problem)
10. Suppose $A=\left(\begin{array}{rr}1 & -6 \\ 3 & 12\end{array}\right)$. Find a lower-triangular matrix L and an upper-triangular matrix U such that $A=L U$.

Solution. The elementary matrix that implements the row operation $R 2 \rightarrow R 2-3 R 1$ is $\left(\begin{array}{rr}1 & 0 \\ -3 & 1\end{array}\right)$. In other words,

$$
\left(\begin{array}{rr}
1 & 0 \\
-3 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & -6 \\
3 & 12
\end{array}\right)=\left(\begin{array}{cc}
1 & -6 \\
0 & 30
\end{array}\right) .
$$

Multiplying both sides by the inverse elementary matrix $\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$ shows that

$$
A=\left(\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & -6 \\
0 & 30
\end{array}\right) .
$$

Thus $L=\left(\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right)$ and $U=\left(\begin{array}{cc}1 & -6 \\ 0 & 30\end{array}\right)$.
There are infinitely many other correct answers, for A can also be written as $(L D)\left(D^{-1} U\right)$ for an arbitrary invertible diagonal matrix D.
11. Find the least-squares solution to the following inconsistent system.

$$
\begin{aligned}
2 x_{1}+x_{2} & =5 \\
x_{1}-x_{2} & =0 \\
x_{1}-x_{2} & =2
\end{aligned}
$$

Solution. In matrix form, the system reads as follows:

$$
\left(\begin{array}{rr}
2 & 1 \\
1 & -1 \\
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{l}
5 \\
0 \\
2
\end{array}\right) .
$$

Linear Algebra

The corresponding least-squares problem is formed by multiplying both sides by $\left(\begin{array}{rrr}2 & 1 & 1 \\ 1 & -1 & -1\end{array}\right)$, the transpose matrix. The resulting system has the following form:

$$
\left(\begin{array}{ll}
6 & 0 \\
0 & 3
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{12}{3} .
$$

In other words, $6 x_{1}=12$ and $3 x_{2}=3$, so $x_{1}=2$ and $x_{2}=1$.
12. Suppose $A=\left(\begin{array}{rr}-2 & -2 \\ 15 & 9\end{array}\right)$. Find a diagonal matrix D and an invertible matrix S such that $S^{-1} A S=D$.

Solution. The diagonal matrix D should have the eigenvalues of A on the diagonal, and the matrix S should be the transition matrix that has the corresponding eigenvectors of A as its columns.
The characteristic equation for the eigenvalues is the following:

$$
\begin{aligned}
0 & =\left|\begin{array}{cc}
-2-\lambda & -2 \\
15 & 9-\lambda
\end{array}\right|=(-2-\lambda)(9-\lambda)-(-2) \times 15 \\
& =\lambda^{2}-7 \lambda+12=(\lambda-3)(\lambda-4) .
\end{aligned}
$$

Therefore the eigenvalues are 3 and 4 , and $D=\left(\begin{array}{ll}3 & 0 \\ 0 & 4\end{array}\right)$.
An eigenvector corresponding to eigenvalue 3 is any nonzero vector in the nullspace of the matrix $\left(\begin{array}{rr}-5 & -2 \\ 15 & 6\end{array}\right)$, and one such vector is $\binom{2}{-5}$. An eigenvector corresponding to eigenvalue 4 is any nonzero vector in the nullspace of the matrix $\left(\begin{array}{rr}-6 & -2 \\ 15 & 5\end{array}\right)$, and one such vector is $\binom{2}{-6}$. Therefore one choice for S is $\left(\begin{array}{rr}2 & 2 \\ -5 & -6\end{array}\right)$.
Other correct answers are possible. You could multiply the first column of S by any nonzero number and multiply the second column of S by another nonzero number. Or you could swap the columns of S and simultaneously swap the diagonal entries of D.

