1. To solve the differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = -30\cos(2x)$, first solve the homogeneous equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 4y = 0$ by trying $y = e^{rx}$. This leads to the quadratic equation $r^2 - 5r + 4 = 0$, or (r-4)(r-1) = 0. Hence the general solution of the homogeneous equation is $y = c_1e^x + c_2e^{4x}$, where c_1 and c_2 are arbitrary constants.

Next look for a particular solution of the original differential equation. Using the method of undetermined coefficients, try $y = A\cos(2x) + B\sin(2x)$, where the constants A and B are to be determined. Substituting this trial solution into the differential equation and matching coefficients of $\cos(2x)$ and $\sin(2x)$ on both sides gives a pair of simultaneous equations -4A - 10B + 4A = -30 and -4B + 10A + 4B = 0, whence A = 0 and B = 3.

The general solution of the original differential equation is therefore $y = c_1 e^x + c_2 e^{4x} + 3\sin(2x)$. Applying the initial conditions y(0) = 5 and y'(0) = 26gives a pair of simultaneous equations $5 = c_1 + c_2$ and $26 = c_1 + 4c_2 + 6$, whence $c_1 = 0$ and $c_2 = 5$.

The final solution is then $y = 5e^{4x} + 3\sin(2x)$.

2. This problem is the same as exercise 35 on page 229 of Nagle & Saff. It was an assigned homework problem! To solve the differential equation $\frac{d^2y}{dx^2} + y = \sec(x)$, first observe that the homogeneous equation y'' + y = 0 has the general solution $c_1 \cos(x) + c_2 \sin(x)$. Using the method of variation of parameters, look for a solution of the nonhomogeneous equation in the form $y = v_1 \cos(x) + v_2 \sin(x)$, where v_1 and v_2 are functions to be determined.

If we impose the side condition $v'_1 \cos(x) + v'_2 \sin(x) = 0$, then the derivative y' has the simple form $y' = -v_1 \sin(x) + v_2 \cos(x)$. Then $y'' = -v_1 \cos(x) - v_2 \sin(x) - v'_1 \sin(x) + v'_2 \cos(x)$. Substituting this information into the differential equation yields $-v'_1 \sin(x) + v'_2 \cos(x) = \sec(x)$.

The side condition and this equation form a pair of simultaneous equations for v'_1 and v'_2 . One way to solve is to multiply the first equation by $\sin(x)$, the second equation by $\cos(x)$, and add the resulting equations to get $v'_2 = 1$ (since $\sin^2(x) + \cos^2(x) = 1$ and $\cos(x) \sec(x) =$ 1). Consequently, we can take $v_2 = x$. Inserting $v'_2 = 1$ in the side condition gives $v'_1 = -\frac{\sin(x)}{\cos(x)}$, and integrating with the substitution $u = \cos(x)$ yields $v_1 = \ln(\cos(x))$.

The general solution to the original differential equation is then $y = c_1 \cos(x) + c_2 \sin(x) + \{\ln(\cos(x))\} \cos(x) + x \sin(x).$

3. To set up the system of differential equations, use that the force exerted by a spring is proportional to the stretch in the spring (Hooke's law). The stretch in the spring joining the two masses depends on the positions of *both* masses.

Let x denote the displacement of the heavier mass from its equilibrium position, and let y denote the displacement of the lighter mass from its equilibrium position. Suppose that x and y increase to the right, and the lighter mass is to the right of the heavier mass. From Newton's law (F = ma) and from Hooke's law we get the differential equations $2 \cdot x'' = -2 \cdot x + 1 \cdot (y - x)$ and $1 \cdot y'' = -1 \cdot (y - x)$, where the primes represent derivatives with respect to time t.

One way to solve the pair of differential equations is to isolate y in the first equation: y = 2x'' + 3x. Substituting this relation into the second equation gives $2x^{iv} + 3x'' = -(2x'' + 3x - x)$, or $2x^{iv} + 5x'' + 2x = 0$. Trying $x = e^{rt}$ gives $2r^4 + 5r^2 + 2 = 0$. The quadratic formula gives $r^2 = (-5 \pm \sqrt{25 - 16})/4$, whence r^2 is either -2 or -1/2. Therefore r is either $\pm \sqrt{2}i$ or $\pm \sqrt{1/2}i$. Consequently, the natural frequencies of the system are $\sqrt{2}/2\pi$ and $\sqrt{1/2}/2\pi$.

4. There are many different *RLC* circuits for which $I(t) = (5 + 4t)e^{-3t}$ will be a solution of the differential equation $L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = \frac{dE}{dt}.$

For example, if E(t) is constant, then dE/dt = 0, and the differential equation is homogeneous. To have a solution of the specified form, the system must be

critically damped; in other words, the quadratic equation $Lr^2 + Rr + 1/C = 0$ must have the double root r = -3. Since $(r+3)^2 = r^2 + 6r + 9$, we could take L = 1, R = 6, and C = 1/9.

Other examples of valid circuits can be obtained under the assumption that $dE/dt \neq 0$. In that case, an acceptable E can be computed for practically any values of L, R, and C. A simple specific case would be L = 0, R = 0, and C = 1. The differential equation then reduces to I = dE/dt, and since I(t) is prescribed, we can integrate to find $E(t) = K - (19 + 12t)e^{-3t}/9$, where K is an arbitrary integration constant. As another example, choosing L = 1, R = 1, and C = 1 and integrating gives $E(t) = K - (84t + 73)e^{-3t}/9$. The value of the constant K can be adjusted to make the voltage positive, if desired.

5. Substituting y = uv in the differential equation y'' + py' + qy = 0 and simplifying yields u''v + u'(2v' + pv) + u(v'' + pv' + qv) = 0. To make the u' term vanish, we need 2v' + pv = 0. This is a first-order linear differential equation for v. Separating variables gives v'/v = -p/2, and integrating yields $\ln v = -\int \frac{1}{2}p(x) dx$. Hence $v = \exp(-\frac{1}{2}\int p(x) dx)$.