1. To solve the differential equation $\frac{d^{2} y}{d x^{2}}-$ $5 \frac{d y}{d x}+4 y=-30 \cos (2 x)$, first solve the homogeneous equation $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+4 y=$ 0 by trying $y=e^{r x}$. This leads to the quadratic equation $r^{2}-5 r+4=0$, or $(r-4)(r-1)=0$. Hence the general solution of the homogeneous equation is $y=c_{1} e^{x}+c_{2} e^{4 x}$, where c_{1} and c_{2} are arbitrary constants.

Next look for a particular solution of the original differential equation. Using the method of undetermined coefficients, try $y=A \cos (2 x)+B \sin (2 x)$, where the constants A and B are to be determined. Substituting this trial solution into the differential equation and matching coefficients of $\cos (2 x)$ and $\sin (2 x)$ on both sides gives a pair of simultaneous equations $-4 A-10 B+4 A=-30$ and $-4 B+10 A+4 B=0$, whence $A=0$ and $B=3$.

The general solution of the original differential equation is therefore $y=c_{1} e^{x}+$ $c_{2} e^{4 x}+3 \sin (2 x)$. Applying the initial conditions $y(0)=5$ and $y^{\prime}(0)=26$ gives a pair of simultaneous equations $5=c_{1}+c_{2}$ and $26=c_{1}+4 c_{2}+6$, whence $c_{1}=0$ and $c_{2}=5$.

The final solution is then $y=5 e^{4 x}+$ $3 \sin (2 x)$.
2. This problem is the same as exercise 35 on page 229 of Nagle \& Saff. It was an assigned homework problem!

To solve the differential equation $\frac{d^{2} y}{d x^{2}}+$ $y=\sec (x)$, first observe that the homogeneous equation $y^{\prime \prime}+y=0$ has the general solution $c_{1} \cos (x)+c_{2} \sin (x)$. Using the method of variation of parameters, look for a solution of the nonhomogeneous equation in the form $y=$ $v_{1} \cos (x)+v_{2} \sin (x)$, where v_{1} and v_{2} are functions to be determined.

If we impose the side condition $v_{1}^{\prime} \cos (x)+v_{2}^{\prime} \sin (x)=0$, then the derivative y^{\prime} has the simple form $y^{\prime}=-v_{1} \sin (x)+v_{2} \cos (x)$. Then $y^{\prime \prime}=-v_{1} \cos (x)-v_{2} \sin (x)-v_{1}^{\prime} \sin (x)+$ $v_{2}^{\prime} \cos (x)$. Substituting this information into the differential equation yields $-v_{1}^{\prime} \sin (x)+v_{2}^{\prime} \cos (x)=\sec (x)$.

The side condition and this equation form a pair of simultaneous equations for v_{1}^{\prime} and v_{2}^{\prime}. One way to solve is to multiply the first equation by $\sin (x)$, the second equation by $\cos (x)$, and add the resulting equations to get $v_{2}^{\prime}=1$ (since $\sin ^{2}(x)+\cos ^{2}(x)=1$ and $\cos (x) \sec (x)=$ 1). Consequently, we can take $v_{2}=x$. Inserting $v_{2}^{\prime}=1$ in the side condition gives $v_{1}^{\prime}=-\sin (x) / \cos (x)$, and integrating with the substitution $u=\cos (x)$ yields $v_{1}=\ln (\cos (x))$.

The general solution to the original differential equation is then $y=c_{1} \cos (x)+$ $c_{2} \sin (x)+\{\ln (\cos (x))\} \cos (x)+x \sin (x)$.
3. To set up the system of differential equations, use that the force exerted by a spring is proportional to the stretch in

Page 1
the spring (Hooke's law). The stretch in the spring joining the two masses depends on the positions of both masses.

Let x denote the displacement of the heavier mass from its equilibrium position, and let y denote the displacement of the lighter mass from its equilibrium position. Suppose that x and y increase to the right, and the lighter mass is to the right of the heavier mass. From Newton's law $(F=m a)$ and from Hooke's law we get the differential equations $2 \cdot x^{\prime \prime}=-2 \cdot x+1 \cdot(y-x)$ and $1 \cdot y^{\prime \prime}=-1 \cdot(y-x)$, where the primes represent derivatives with respect to time t.

One way to solve the pair of differential equations is to isolate y in the first equation: $y=2 x^{\prime \prime}+3 x$. Substituting this relation into the second equation gives $2 x^{i v}+3 x^{\prime \prime}=-\left(2 x^{\prime \prime}+3 x-x\right)$, or $2 x^{i v}+5 x^{\prime \prime}+2 x=0$. Trying $x=e^{r t}$ gives $2 r^{4}+5 r^{2}+2=0$. The quadratic formula gives $r^{2}=(-5 \pm \sqrt{25-16}) / 4$, whence r^{2} is either -2 or $-1 / 2$. Therefore r is either $\pm \sqrt{2} i$ or $\pm \sqrt{1 / 2} i$. Consequently, the natural frequencies of the system are $\sqrt{2} / 2 \pi$ and $\sqrt{1 / 2} / 2 \pi$.
4. There are many different $R L C$ circuits for which $I(t)=(5+4 t) e^{-3 t}$ will be a solution of the differential equation $L \frac{d^{2} I}{d t^{2}}+R \frac{d I}{d t}+\frac{1}{C} I=\frac{d E}{d t}$.
For example, if $E(t)$ is constant, then $d E / d t=0$, and the differential equation is homogeneous. To have a solution of the specified form, the system must be
critically damped; in other words, the quadratic equation $L r^{2}+R r+1 / C=0$ must have the double root $r=-3$. Since $(r+3)^{2}=r^{2}+6 r+9$, we could take $L=1$, $R=6$, and $C=1 / 9$.

Other examples of valid circuits can be obtained under the assumption that $d E / d t \neq 0$. In that case, an acceptable E can be computed for practically any values of L, R, and C. A simple specific case would be $L=0, R=0$, and $C=1$. The differential equation then reduces to $I=d E / d t$, and since $I(t)$ is prescribed, we can integrate to find $E(t)=K-(19+12 t) e^{-3 t} / 9$, where K is an arbitrary integration constant. As another example, choosing $L=1$, $R=1$, and $C=1$ and integrating gives $E(t)=K-(84 t+73) e^{-3 t} / 9$. The value of the constant K can be adjusted to make the voltage positive, if desired.
5. Substituting $y=u v$ in the differential equation $y^{\prime \prime}+p y^{\prime}+q y=0$ and simplifying yields $u^{\prime \prime} v+u^{\prime}\left(2 v^{\prime}+p v\right)+u\left(v^{\prime \prime}+p v^{\prime}+\right.$ $q v)=0$. To make the u^{\prime} term vanish, we need $2 v^{\prime}+p v=0$. This is a first-order linear differential equation for v. Separating variables gives $v^{\prime} / v=-p / 2$, and integrating yields $\ln v=-\int \frac{1}{2} p(x) d x$. Hence $v=\exp \left(-\frac{1}{2} \int p(x) d x\right)$.

