- A first-order differential equation $y^{\prime}=f(x, y)$ asks for a curve whose slope at each point is prescribed. Typically there is a family of such curves.
- An initial value problem

$$
\begin{equation*}
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

singles out one solution curve by demanding that the curve pass through a specified point.

- A theorem says that if f is a reasonable function near the initial point $\left(x_{0}, y_{0}\right)$, then there is one and only one solution to the initial value problem (1) near $\left(x_{0}, y_{0}\right)$. (The precise meaning of "reasonable" in this context is that both f and the partial derivative $\partial f / \partial y$ are continuous functions near $\left(x_{0}, y_{0}\right)$.
- Knowing that a solution exists is not the same as finding the solution! A solution might be presented
- explicitly, in the form $y=g(x)$;
- implicitly, via an equation of the form $G(x, y)=$ constant;
- graphically, by using the direction field to sketch a solution curve;
- as a table of values computed by a numerical scheme like Euler's method.
- Maple has commands for solving differential equations.
- dsolve attempts to find an explicit or implicit solution to a differential equation.
- With the numeric option, dsolve finds an approximate numerical solution to an initial value problem.
- DEplot can display a direction field and solution curves.

