

Review problems: linear algebra

- If $A=\left(\begin{array}{ccc}-34 & -16 & 36 \\ -18 & -6 & 18 \\ -47 & -21 & 49\end{array}\right)$, find a 3×2 matrix B such that $A B=B\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.
- Suppose $\vec{u}_{1}=\binom{1}{0}, \vec{u}_{2}=\binom{1}{1}, \vec{v}_{1}=\binom{1}{2}$, and $\vec{v}_{2}=\binom{2}{5}$. Find a matrix B such that if $a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}=b_{1} \vec{v}_{1}+b_{2} \vec{v}_{2}$, then $\binom{a_{1}}{a_{2}}=B\binom{b_{1}}{b_{2}}$.
- True or false? If V_{1} and V_{2} are two subspaces of \mathbb{R}^{3}, both of dimension 2 , then there exists a linear transformation $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $f\left(V_{1}\right)=V_{2}$.

Review problems: linear algebra

- Construct a (non-standard) inner product on \mathbb{R}^{2} for which the vectors $(1,0)$ and $(1,1)$ become orthogonal.
- Give an example of a linear transformation $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that the vectors $(1,0)$ and $(1,1)$ form a basis for the image and the vector $(2,4,2)$ is a basis for the null space.
- In the vector space \mathcal{P} of polynomials, express x as a linear combination of $p_{1}(x)=1+x+x^{2}, p_{2}(x)=1+2 x+3 x^{2}$, and $p_{3}(x)=2-x+4 x^{2}$.
- The trace of a square matrix is the sum of the elements on the main diagonal: for example,
trace $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)=1+5+9=15$. On the vector space of 3×3 matrices, is the trace a linear function?

