

Computing determinants (continued)

Recursive rule for the determinant of a matrix:
Pick any one row or column, multiply each element in that row or column by its cofactor, and add the results.

Example. Expanding $\operatorname{det}\left(\begin{array}{rrr}1 & 0 & 2 \\ 0 & 3 & 5 \\ -1 & 4 & 0\end{array}\right)$ across the bottom row
gives $-1 \operatorname{det}\left(\begin{array}{ll}0 & 2 \\ 3 & 5\end{array}\right)-4 \operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 0 & 5\end{array}\right)+0 \operatorname{det}\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$
$=-1(0-6)-4(5-0)+0=-14$.
Expanding on the third column gives
$2 \operatorname{det}\left(\begin{array}{rr}0 & 3 \\ -1 & 4\end{array}\right)-5 \operatorname{det}\left(\begin{array}{rr}1 & 0 \\ -1 & 4\end{array}\right)+0 \operatorname{det}\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$
$=2(3)-5(4)+0=-14$.

Inverse matrices and determinants

Formula for the inverse of a matrix:
Replace each element by its cofactor (remember the \pm sign), transpose the resulting matrix, and divide by the determinant of the original matrix
Example. If $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right)$, then $\operatorname{det} A=24$, and

$$
A^{-1}=\frac{1}{24}\left(\left.\begin{array}{cc}
\left|\left(\begin{array}{ll}
4 & 5 \\
0 & 6
\end{array}\right)\right| & -\left|\left(\begin{array}{ll}
2 & 3 \\
0 & 6
\end{array}\right)\right| \\
-\left|\left(\begin{array}{ll}
0 & 5 \\
0 & 6
\end{array}\right)\right| & \left|\left(\begin{array}{ll}
2 & 3 \\
4 & 5
\end{array}\right)\right| \\
\left.\left\lvert\, \begin{array}{ll}
1 & 3 \\
0 & 6
\end{array}\right.\right) \mid & -\left|\left(\begin{array}{ll}
1 & 3 \\
0 & 5
\end{array}\right)\right| \\
\left|\left(\begin{array}{ll}
0 & 4 \\
0 & 0
\end{array}\right)\right| & -\left|\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)\right|
\end{array} \right\rvert\, \begin{array}{ll}
1 & 2 \\
0 & 4
\end{array}\right)| | .
$$

Example continued

So $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right)$ and $A^{-1}=\left(\begin{array}{rrr}1 & -\frac{1}{2} & -\frac{1}{12} \\ 0 & \frac{1}{4} & -\frac{5}{24} \\ 0 & 0 & \frac{1}{6}\end{array}\right)$.
You can check the answer by multiplying A times A^{-1} to see if you get the identity matrix.

Notice that the inverse of an upper triangular matrix is again upper triangular.

What happens to the determinant under elementary row operations?

1. Adding a multiple of a row to another row leaves the determinant unchanged. Example. $R 2 \rightarrow R 2+2 R 1$:
$\left|\begin{array}{rr}1 & 10 \\ -2 & 3\end{array}\right|=\left|\begin{array}{ll}1 & 10 \\ 0 & 23\end{array}\right|$.
2. Multiplying a row by a scalar multiplies the determinant by that scalar.
Example. $\left|\begin{array}{rr}5 & 50 \\ -2 & 3\end{array}\right|=5\left|\begin{array}{rr}1 & 10 \\ -2 & 3\end{array}\right|=115$.
3. Interchanging two rows changes the sign of the determinant.

Example. $\left|\begin{array}{rc}-2 & 3 \\ 1 & 10\end{array}\right|=-\left|\begin{array}{rr}1 & 10 \\ -2 & 3\end{array}\right|$.

Example: problem 6, page 98

Cramer's rule

\(\left|$$
\begin{array}{cccc}1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27 \\
1 & 4 & 16 & 64\end{array}
$$\right|=\left|\begin{array}{cccc}1 \& 1 \& 1 \& 1

0 \& 1 \& 3 \& 7

0 \& 2 \& 8 \& 26

0 \& 3 \& 15 \& 63\end{array}\right|\)| by subtracting the |
| :--- |
| first row from the |
| other rows |

$=\left|\begin{array}{ccc}1 & 3 & 7 \\
2 & 8 & 26 \\
3 & 15 & 63\end{array}\right|$ by expanding on the first column
$=\left|\begin{array}{ccc}1 & 3 & 7 \\
0 & 2 & 12 \\
0 & 6 & 42\end{array}\right|$ via $R 2 \rightarrow R 2-2 R 1$ and $R 3 \rightarrow R 3-3 R 1$
$=\left|\begin{array}{cc}2 & 12 \\
6 & 42\end{array}\right|=2\left|\begin{array}{cc}1 & 6 \\
6 & 42\end{array}\right|=12\left|\begin{array}{ll}1 & 6 \\
1 & 7\end{array}\right|=12$.

Formula for solving a system of equations $A \vec{x}=\vec{b}$:
$x_{1}=\frac{1}{\operatorname{det} A} \operatorname{det}($ matrix A with its first column replaced by \vec{b}) and similarly for x_{2}, x_{3}, \ldots.

Example. $\left(\begin{array}{lll}1 & 0 & 4 \\ 0 & 2 & 3 \\ 5 & 1 & 0\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}10 \\ 20 \\ 30\end{array}\right)$
$x_{1}=\frac{\left|\begin{array}{lll}10 & 0 & 4 \\ 20 & 2 & 3 \\ 30 & 1 & 0\end{array}\right|}{\left|\begin{array}{lll}1 & 0 & 4 \\ 0 & 2 & 3 \\ 5 & 1 & 0\end{array}\right|}$
$x_{1}=190 / 43$

$$
\begin{gathered}
x_{2}=\frac{\left|\begin{array}{lll}
1 & 10 & 4 \\
0 & 20 & 3 \\
5 & 30 & 0
\end{array}\right|}{\left|\begin{array}{lll}
1 & 0 & 4 \\
0 & 2 & 3 \\
5 & 1 & 0
\end{array}\right|} \\
x_{2}=340 / 43
\end{gathered}
$$

$x_{3}=\frac{\left|\begin{array}{lll}1 & 0 & 10 \\ 0 & 2 & 20 \\ 5 & 1 & 30\end{array}\right|}{\left|\begin{array}{lll}1 & 0 & 4 \\ 0 & 2 & 3 \\ 5 & 1 & 0\end{array}\right|}$
$x_{3}=60 / 43$

