

One-to-one functions

A function f is one-to-one (or injective) if no two distinct points of the domain have equal images: $f(\vec{x}) \neq f(\vec{y})$ when $\vec{x} \neq \vec{y}$.

To show that a linear function is one-to-one, it is enough to check that $f(\vec{x})=\overrightarrow{0}$ only when $\vec{x}=\overrightarrow{0}$.
Equivalently, $f(\vec{x})=A \vec{x}$ is a one-to-one function if the columns of the matrix A are linearly independent.
Example. If $f(\vec{x})=\left(\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 5 \\ 3 & 4 & 5 \\ 4 & 7 & 5\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$, is f one-to-one?
Answer. No. The reduced form of the matrix is $\left(\begin{array}{rrr}1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$,
so $3 C 1-C 2-C 3=0$; thus $f(3,-1,-1)=\overrightarrow{0}$.

