

Vector spaces

A vector space is a set of mathematical objects with an addition law that is commutative and associative and a multiplication by scalars that satisfies the distributive law.

Examples.

(i) \mathbb{R}^n (the standard model of a vector space) (ii) \mathbb{R}^∞ , the space of unending sequences (x_1, x_2, \ldots) (iii) \mathcal{P}_n , the space of polynomials of degree $\leq n$ (iv) C[0, 1], the space of continuous functions on the closed interval [0, 1]

(v) $\mathcal{M}_{n,m}$, the space of matrices with *n* rows and *m* columns

Non-examples.

(i) polynomials with constant term 1 (not closed under +) (ii) real numbers > 0 (not closed under multiplication by -1) (iii) matrices with determinant equal to 0 (not closed under +)

June 7, 2005: slide #2

Subspaces

A typical way to get a new vector space from an old one is to take a subset that is closed under addition and under multiplication by scalars. This is called a *subspace*.

Examples.

(i) The set of vectors in R³ perpendicular to the vector (1,2,3) is a subspace of R³: namely, the plane *x* + 2*y* + 3*z* = 0.
(ii) Every plane passing through the origin is a subspace of R³. So is every line passing through the origin.
(iii) If M_{2,2} is the vector space of 2 × 2 matrices, then the set of *symmetric* 2 × 2 matrices is a subspace.
(iv) If *P* is the vector space of all polynomials, then the set of

polynomials p(x) such that $\int_0^1 p(x) dx = 0$ is a subspace. (v) If C[0, 1] is the vector space of continuous functions on the interval [0, 1], then the set of continuous functions f such that f(1) = 0 is a subspace. Linear transformations

Yesterday we called a function f with domain \mathbb{R}^n and range \mathbb{R}^m linear if $f(\vec{x} + \vec{y}) = f(\vec{x}) + f(\vec{y})$ and $f(a\vec{x}) = af(\vec{x})$ for all vectors \vec{x} and \vec{y} and all scalars a.

In general, a function between vector spaces is similarly called a *linear transformation* (or *linear operator*) if it respects sums and multiplication by scalars.

Examples.

(i) Differentiation is a linear operator on the space \mathcal{P} of polynomials because (p(x) + q(x))' = p'(x) + q'(x) and (ap(x))' = ap'(x). (ii) Another linear operator on \mathcal{P} is $p(x) \mapsto \int_0^x p(t) dt$ because $\int_0^x (p(t) + q(t)) dt = \int_0^x p(t) dt + \int_0^x q(t) dt$ and $\int_0^x ap(t) dt = a \int_0^x p(t) dt$.

Non-example. $p(x) \mapsto p(x)p'(x)$ is not linear.

June 7, 2005: slide #3

Math 311-102

Image and inverse

If $f(\vec{x}) = A\vec{x}$, then the *image* of *f* consists of all linear combinations of the columns of the matrix *A*.

Example. If $f(\vec{x}) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, then the image of f is a

plane in \mathbb{R}^3 : namely, the plane x - 2y + z = 0.

The image of a linear transformation between vector spaces is always a subspace of the range.

When *f* is one-to-one, the *inverse* f^{-1} satisfies $f^{-1}(f(\vec{x})) = \vec{x}$ for every vector \vec{x} in the domain. The inverse is again a linear transformation.

In the preceding example, f^{-1} can be realized by the matrix $\begin{pmatrix} 1 & 2 \end{pmatrix}$

$$\begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \text{ since } \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Math 311-102