

Image and inverse

If $f(\vec{x})=A \vec{x}$, then the image of f consists of all linear combinations of the columns of the matrix A.
Example. If $f(\vec{x})=\left(\begin{array}{rr}1 & 2 \\ 0 & 1 \\ -1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$, then the image of f is a
plane in \mathbb{R}^{3} : namely, the plane $x-2 y+z=0$.
The image of a linear transformation between vector spaces is always a subspace of the range.

When f is one-to-one, the inverse f^{-1} satisfies $f^{-1}(f(\vec{x}))=\vec{x}$ for every vector \vec{x} in the domain. The inverse is again a linear transformation.
In the preceding example, f^{-1} can be realized by the matrix
$\left(\begin{array}{rrr}0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$ since $\left(\begin{array}{rrr}0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)\left(\begin{array}{rr}1 & 2 \\ 0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. June 7, 2005: sidid *5

