

Change of basis

The matrix $A=\left(\begin{array}{cc}-13 & 5 \\ -30 & 12\end{array}\right)$ represents a linear transformation with respect to the standard basis $\left\{\binom{1}{0},\binom{0}{1}\right\}$.
What matrix represents the same transformation with respect to the basis $\left\{\binom{1}{3},\binom{1}{2}\right\}$ of eigenvectors?

Answer. The diagonal matrix $D=\left(\begin{array}{cc}2 & 0 \\ 0 & -3\end{array}\right)$ whose diagonal entries are the eigenvalues.

The matrix $U=\left(\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right)$ (whose columns are the eigenvectors) translates from eigenvector coordinates to standard
coordinates. The matrix $U^{-1}=\left(\begin{array}{cc}-2 & 1 \\ 3 & -1\end{array}\right)$ translates from standard coordinates to eigenvector coordinates.

Then $A=U D U^{-1}$ and $U^{-1} A U=D$. (Check!)
We can diagonalize a matrix by using a basis of eigenvectors.

