

Change of basis

The matrix $A = \begin{pmatrix} -13 & 5 \\ -30 & 12 \end{pmatrix}$ represents a linear transformation with respect to the standard basis $\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\}$. What matrix represents the same transformation with respect to the basis $\{\begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}\}$ of eigenvectors? **Answer**. The diagonal matrix $D = \begin{pmatrix} 2 & 0 \\ 0 & -3 \end{pmatrix}$ whose diagonal entries are the eigenvalues. The matrix $U = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$ (whose columns are the eigenvectors) translates from eigenvector coordinates to standard coordinates. The matrix $U^{-1} = \begin{pmatrix} -2 & 1 \\ 3 & -1 \end{pmatrix}$ translates from standard coordinates to eigenvector coordinates. Then $A = UDU^{-1}$ and $U^{-1}AU = D$. (Check!)

We can *diagonalize* a matrix by using a basis of eigenvectors.

Math 311-102