

generalization of length) defined by $\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$.

Example. For the inner product of integration, $||p(x)|| = (\int_{-1}^{1} p(x)^2 dx)^{1/2}.$

Similarly, every inner product has an associated notion of angle between vectors: $\cos(\theta) = \frac{\langle \vec{v}, \vec{w} \rangle}{\|\vec{v}\| \| \|\vec{w} \|}.$

Example. The "angle" between the functions x^2 and x^3 (for the inner product of integration) is determined by

 $\cos(\theta) = \frac{\int_{-1}^{1} x^5 dx}{(\int_{-1}^{1} x^4 dx)^{1/2} (\int_{-1}^{1} x^6 dx)^{1/2}} = 0$, so these two functions are orthogonal.

Every inner product satisfies the *Cauchy-Schwarz inequality* $|\langle \vec{v}, \vec{w} \rangle| \leq \|\vec{v}\| \|\vec{w}\|$ (corresponding to $|\cos(\theta)| \leq 1$).

June 15, 2005; slide #3

Math 311-102

norm (length) equal to 1.

Examples. 1. The standard basis $\{(1,0), (0,1)\}$ in \mathbb{R}^2 is

2. The basis $\{(1,1), (1,-1)\}$ is orthogonal, but not normalized.

3. In the space \mathcal{P}_2 of polynomials, the basis $\{1, x, x^2\}$ is not

The basis $\{1, x, (x^2 - \frac{1}{3})\}$ is orthogonal but not orthonormal.

orthonormal (for the standard inner product).

The basis $\{(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})\}$ is orthonormal.

orthogonal because $\langle 1, x^2 \rangle = \int_{-1}^{1} x^2 dx = \frac{2}{3} \neq 0.$

The basis $\left\{\frac{1}{\sqrt{2}}, \sqrt{\frac{3}{2}}x, \sqrt{\frac{5}{8}}(3x^2-1)\right\}$ is orthonormal.

Gram-Schmidt orthonormalization

There is a standard procedure for producing an orthonormal basis related to an arbitrary basis.

Example. Starting from the basis vectors $\vec{v}_1 = (1, 1, 0)$, $\vec{v}_2 = (0, 1, 1)$, and $\vec{v}_3 = (1, 1, 1)$, produce an orthonormal basis $\{\vec{u}_1, \vec{u}_2, \vec{u}_3\}$.

Recursive procedure. Subtract from each vector its projection on the previously constructed vectors, and normalize. First step: Normalize \vec{v}_1 to get $\vec{u}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$. Second step: Subtract from \vec{v}_2 its projection on \vec{u}_1 to get

 $\vec{v}_2 - \langle \vec{v}_2, \vec{u}_1 \rangle \vec{u}_1 = (-\frac{1}{2}, \frac{1}{2}, 1);$ normalize to get $\vec{u}_2 = (-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}).$ Third step: Subtract from \vec{v}_3 its projections on \vec{u}_1 and \vec{u}_2 to get $\vec{v}_3 - \langle \vec{v}_3, \vec{u}_1 \rangle \vec{u}_1 - \langle \vec{v}_3, \vec{u}_2 \rangle \vec{u}_2 = (1, 1, 1) - (1, 1, 0) - (-\frac{1}{3}, \frac{1}{3}, \frac{2}{3}) = (\frac{1}{3}, -\frac{1}{3}, \frac{1}{3});$ normalize to get $\vec{u}_3 = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}).$

Math 311-102

June 15, 2005: slide #5

Math 311-102

Example continued

The vectors $\vec{u}_1 = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0)$, $\vec{u}_2 = (-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}})$, and $\vec{u}_3 = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$ form an orthonormal basis for \mathbb{R}^3 . Write the vector (4, -2, 3) as linear combination of these basis vectors: namely, $(4, -2, 3) = a_1\vec{u}_1 + a_2\vec{u}_2 + a_3\vec{u}_3$.

Solution. Take the inner product of both sides with \vec{u}_1 to get $\langle (4, -2, 3), (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0) \rangle = a_1$ or $a_1 = \sqrt{2}$. Similarly, $a_2 = \langle (4, -2, 3), \vec{u}_2 \rangle = 0$, and $a_3 = \langle (4, -2, 3), \vec{u}_3 \rangle = 3\sqrt{3}$. So $\vec{v} = \sqrt{2} \vec{u}_1 + 3\sqrt{3} \vec{u}_3$.

General principle for orthonormal systems. If $\vec{v} = \sum_k a_k \vec{u}_k$, and if the vectors \vec{u}_k are orthonormal, then the coefficients a_k can be read off via $a_k = \langle \vec{v}, \vec{u}_k \rangle$.

June 15, 2005; slide #6