

Gram-Schmidt orthonormalization

There is a standard procedure for producing an orthonormal basis related to an arbitrary basis.

Example. Starting from the basis vectors $\vec{v}_{1}=(1,1,0)$, $\vec{v}_{2}=(0,1,1)$, and $\overrightarrow{v_{3}}=(1,1,1)$, produce an orthonormal basis $\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$.
Recursive procedure. Subtract from each vector its projection on the previously constructed vectors, and normalize.
First step: Normalize \vec{v}_{1} to get $\vec{u}_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$.
Second step: Subtract from \vec{v}_{2} its projection on \vec{u}_{1} to get $\vec{v}_{2}-\left\langle\vec{v}_{2}, \vec{u}_{1}\right\rangle \vec{u}_{1}=\left(-\frac{1}{2}, \frac{1}{2}, 1\right)$; normalize to get $\vec{u}_{2}=\left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)$ Third step: Subtract from \vec{v}_{3} its projections on \vec{u}_{1} and \vec{u}_{2} to get $\vec{v}_{3}-\left\langle\vec{v}_{3}, \vec{u}_{1}\right\rangle \vec{u}_{1}-\left\langle\vec{v}_{3}, \vec{u}_{2}\right\rangle \vec{u}_{2}=(1,1,1)-(1,1,0)-\left(-\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right)$ $=\left(\frac{1}{3},-\frac{1}{3}, \frac{1}{3}\right)$; normalize to get $\vec{u}_{3}=\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Example continued

The vectors $\vec{u}_{1}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \vec{u}_{2}=\left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \sqrt{\frac{2}{3}}\right)$, and $\vec{u}_{3}=\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ form an orthonormal basis for \mathbb{R}^{3}. Write the vector $(4,-2,3)$ as linear combination of these basis vectors: namely, $(4,-2,3)=a_{1} \vec{u}_{1}+a_{2} \vec{u}_{2}+a_{3} \vec{u}_{3}$.

Solution. Take the inner product of both sides with \vec{u}_{1} to get $\left\langle(4,-2,3),\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)\right\rangle=a_{1}$ or $a_{1}=\sqrt{2}$.
Similarly, $a_{2}=\left\langle(4,-2,3), \vec{u}_{2}\right\rangle=0$, and $a_{3}=\left\langle(4,-2,3), \vec{u}_{3}\right\rangle$
$=3 \sqrt{3}$. So $\vec{v}=\sqrt{2} \vec{u}_{1}+3 \sqrt{3} \vec{u}_{3}$.
General principle for orthonormal systems. If $\vec{v}=\sum_{k} a_{k} \vec{u}_{k}$, and if the vectors \vec{u}_{k} are orthonormal, then the coefficients a_{k} can be read off via $a_{k}=\left\langle\vec{v}, \vec{u}_{k}\right\rangle$.

