

Parametric curves in space

Directional derivatives

of f in any direction.

 $= \left(\frac{2}{7}(2xy + e^z) - \frac{3}{7}x^2 + \frac{6}{7}xe^z\right)\Big|_{(2\,1\,0)} = \frac{10}{7}.$

Example. The vector function $f(t) = (\cos(t), \sin(t), t)$ represents a curve in \mathbb{R}^3 (a helix). Find an equation for the line tangent to the curve at the point where $t = \pi/2$.

Solution. The derivative f'(t) gives the velocity vector (= tangent vector): $(-\sin(t), \cos(t), 1)|_{t=\pi/2} = (-1, 0, 1)$. The point on the curve corresponding to $t = \pi/2$ is $(0, 1, \pi/2)$. A parametric equation for the tangent line in terms of parameter *s* is $(0, 1, \pi/2) + s(-1, 0, 1)$.

Continuation. What is the arc length of the curve from t = 0 to $t = 2\pi$?

Solution. To get the arc length, integrate the speed (length of the velocity vector): $\int_0^{2\pi} |f'(t)| dt = \int_0^{2\pi} \sqrt{\sin^2 t} + \cos^2 t + 1 dt = \int_0^{2\pi} \sqrt{2} dt = 2\pi\sqrt{2}.$

Example. If $f(x, y, z) = x^2y + xe^z$, find the rate of change of f

in the direction of the unit vector $(\frac{2}{7}, -\frac{3}{7}, \frac{6}{7})$ at the point (2, 1, 0).

Solution. Each of the three partial derivatives of *f* contributes,

and the rate of change equals the sum $\left(\frac{2}{7}\frac{\partial f}{\partial x} - \frac{3}{7}\frac{\partial f}{\partial y} + \frac{6}{7}\frac{\partial f}{\partial z}\right)|_{(2,1,0)}$

Notation. The *gradient* of *f*, written ∇f , means the vector $(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial z})$ of partial derivatives. The directional derivative of *f*

in the direction of the unit vector \vec{u} equals the dot product

 $(\nabla f) \cdot \vec{u}$. The length $|\nabla f|$ represents the largest rate of change

June 16, 2005: slide #2

Parametric surfaces

Example. As u and v vary from 0 to 2π , the vector function $f(u, v) = ((5 + 2 \sin u) \cos v, (5 + 2 \sin u) \sin v, 2 \cos u)$ sweeps out a surface in \mathbb{R}^3 (a torus). Find an equation for the plane tangent to the surface at the point where $u = \pi/6$ and $v = \pi/2$.

Solution. The point on the surface is $(0, 6, \sqrt{3})$. The partial derivative $\frac{\partial f}{\partial u}$ is a vector tangent to the surface:

 $((2\cos u)\cos v, (2\cos u)\sin v, -2\sin u)\Big|_{\substack{u=\pi/6\\v=\pi/2}} = (0,\sqrt{3},-1).$

Similarly, $\frac{\partial f}{\partial v}$ is a tangent vector:

 $(-(5+2\sin u)\sin v, (5+2\sin u)\cos v, 0)\Big|_{\substack{u=\pi/6\\v=\pi/2}} = (-6,0,0).$ The cross product of the two tangent vectors gives a vector normal to the surface: $(0,6,6\sqrt{3})$. Just as good a normal is the scalar multiple $(0,1,\sqrt{3})$. The tangent plane has equation $0(x-0)+1(y-6)+\sqrt{3}(z-\sqrt{3})=0$ or $y+\sqrt{3}z=9$.

June 16. 2005: slide #3

Math 311-102

Math 311-102

Math 311-102