

Example continued

Alternate notation. If $\left(\begin{array}{c}u \\ v \\ w\end{array}\right)=\left(\begin{array}{c}x+y \\ x^{2}+y \\ x y\end{array}\right)$ and

$$
\binom{x}{y}=\binom{r \cos (\theta)}{r \sin (\theta)}, \text { then }
$$

$$
\left(\begin{array}{ll}
\frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta} \\
\frac{\partial v}{\partial r} & \frac{\partial v}{\partial \theta} \\
\frac{\partial w}{\partial r} & \frac{\partial w}{\partial \theta}
\end{array}\right)=\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y}
\end{array}\right)\left(\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right) .
$$

For example, $\frac{\partial v}{\partial \theta}=\frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}$.

Coordinate transformations

Question. Is the polar coordinate transformation
$\binom{x}{y}=\binom{r \cos (\theta)}{r \sin (\theta)}$ invertible?
Answer. You can solve explicitly for $r=\sqrt{x^{2}+y^{2}}$ and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)=\cot ^{-1} \frac{x}{y}$, but there are two problems. There is a global problem that θ is ambiguous by addition of multiples of 2π. There is a local problem that θ is not defined when $x=y=0$. The local problem is addressed by the
Inverse function theorem. A transformation is locally invertible at points where the Jacobian matrix is invertible.
Example. Since $\operatorname{det}\left(\begin{array}{cc}\cos (\theta) & -r \sin (\theta) \\ \sin (\theta) & r \cos (\theta)\end{array}\right)=r$, the theorem confirms that the polar coordinate transformation is locally invertible when $r \neq 0$.

