

Example continued

Math 311-102

Alternate notation. If
$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = \begin{pmatrix} x+y \\ x^2+y \\ xy \end{pmatrix}$$
 and $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix}$, then
 $\begin{pmatrix} \frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta} \\ \frac{\partial v}{\partial r} & \frac{\partial u}{\partial \theta} \\ \frac{\partial w}{\partial r} & \frac{\partial w}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} \end{pmatrix} \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix}$.
For example, $\frac{\partial v}{\partial \theta} = \frac{\partial v}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial v}{\partial y} \frac{\partial y}{\partial \theta}$.

Coordinate transformations

Math 311-102

June 20, 2005; slide #5

Question. Is the polar coordinate transformation $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix}$ invertible?

Answer. You can solve explicitly for $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(\frac{y}{x}) = \cot^{-1}\frac{x}{y}$, but there are two problems. There is a *global* problem that θ is ambiguous by addition of multiples of 2π . There is a *local* problem that θ is not defined when x = y = 0. The local problem is addressed by the

Inverse function theorem. A transformation is locally invertible at points where the Jacobian matrix is invertible.

Example. Since det $\binom{\cos(\theta) - r\sin(\theta)}{\sin(\theta) r\cos(\theta)} = r$, the theorem confirms that the polar coordinate transformation is locally invertible when $r \neq 0$.

June 20, 2005: slide #6