

Jacobi's theorem

For any invertible coordinate transformation T (not necessarily linear) from a region R in $u v$ space to $x y$ space,
$\iint_{T(R)} f(x, y) d x d y=\iint_{R} f(T(u, v))\left|\operatorname{det} T^{\prime}(u, v)\right| d u d v$
(and similarly for transformations in \mathbb{R}^{3}).
Example (polar coordinates). The Jacobian matrix of the coordinate transformation $\binom{x}{y}=\binom{r \cos \theta}{r \sin \theta}$ equals
$\left(\begin{array}{rr}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right)$, the determinant is r, so
$\iint_{\substack{2 \\ x^{2}+y^{2} \leq 1}} \sqrt{x^{2}+y^{2}} d x d y=\iint_{\substack{0 \leq \leq \leq \\ 0<\theta \leq 2 \pi}} \sqrt{r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta} \quad r d r d \theta$
$=\int_{0}^{1} r^{2} d r \int_{0}^{2 \pi} d \theta=2 \pi / 3$.

Curvilinear coordinates

The notation for cylindrical coordinates in \mathbb{R}^{3} is (r, θ, z), where (r, θ) are polar coordinates in the $x y$ plane. The volume element $d x d y d z$ transforms to $r d r d \theta d z$.

The notation for spherical coordinates in \mathbb{R}^{3} depends on the age of the book and on the subject (mathematics or physics). The distance from a point to the origin is denoted by r or ρ. In modern mathematics books, θ denotes the same angle as in cylindrical coordinates and ϕ denotes the angle measured down from the z-axis. Older mathematics books and many physics and engineering books reverse the meanings of θ and ϕ.

The volume element $d x d y d z$ transforms to $r^{2} \sin$ (angle down from the z-axis) $d r d \theta d \phi$.

