

## Orthonormal bases

Sample problems: (a) Find an orthonormal basis for $\mathbb{R}^{3}$ in which one of the basis vectors is $\left(\frac{2}{7}, \frac{3}{7}, \frac{6}{7}\right)$.
(b) Starting from the functions $1, x$, and $x^{2}$, use the Gram-Schmidt procedure to construct an orthonormal set with respect to the inner product $\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x$.
(c) Find an orthonormal basis for $\mathbb{R}^{3}$ in which two of the basis vectors span the same plane as do the vectors ( $1,1,0$ ) and (1,0,1).

## Space curves

Sample problems: (a) If $f(t)=\left(t e^{t}, t^{2} \cos (t), e^{t} \sin ^{2}(t)\right)$, find an equation for the line tangent to the curve at the point where $t=0$.
(b) If $f(t)=\left(t, t^{2}, t^{3}\right)$, is there a point on the curve such that the tangent line at that point passes through the origin?
(c) If $f(t)=\left(2 t, t^{2}+1, t^{3}\right)$, either find two points on the curve whose tangent vectors are orthogonal or show that no such points exist.

## Surfaces

Sample problems: (a) If $g(u, v)=\left(u^{2} \cos (v), u v^{2}, u e^{v}\right)$, find an equation for the tangent plane to the surface at the point where $u=1$ and $v=0$.
(b) If $g(u, v)=\left(u, v, u v^{2}\right)$, find an orthonormal basis for $\mathbb{R}^{3}$ such that two of the basis vectors are tangent to the surface at the point where $u=1$ and $v=2$.
(c) Find a $3 \times 3$ matrix $A$ such that two of its eigenvectors are tangent to the surface defined by
$g(u, v)=\left(v \sin (u), 2 u+e^{v}, u+3 v\right)$ at the point on the surface where $u=0$ and $v=0$.

## Directional derivative

Sample problems: (a) If $f(x, y, z)=x^{2}+x y+y z^{3}$, find the directional derivative of $f$ in the direction of the unit vector $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$ at the point $(1,2,3)$.
(b) Find the directional derivative of $f(x, y, z)=x e^{y z}+y^{2}$ in the direction of an eigenvector of the matrix $\left(\begin{array}{rrr}2 & 3 & 4 \\ 0 & 2 & -1 \\ 0 & 0 & 5\end{array}\right)$
(c) If $f(x, y, z)=x \cos (y)+y \cos (x)+x y z$, in what direction is the directional derivative maximal at the point $(0,0,0)$ ?

The derivative matrix

Sample problems: (a) If $f(u, v)=\left(\begin{array}{c}u e^{v} \\ u+v \\ \cos (v)\end{array}\right)$, find the derivative matrix of $f$.
(b) If $f(x, y, z)=\left(\begin{array}{c}x^{2}+x y+z \\ x y \\ 3 x+4 y+5 z\end{array}\right)$, find the eigenvalues of the derivative matrix at $(0,0,0)$.
(c) Give an example of a transformation $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that the transformation is locally invertible near the point $(0,0,0)$ but is not locally invertible near the point $(1,1,1)$.

## Chain rule

Sample problems: (a) If $f(x, y, z)=x^{2}+y^{2}+z^{2}$, and $(r, \theta, z)$ represent cylindrical coordinates, find $\frac{\partial f}{\partial \theta}$.
(b) If $f\binom{u}{v}=\binom{u^{2} v^{2}}{2 u+3 v}$ and $\binom{u}{v}=g\binom{x}{y}=\binom{x e^{y}}{y e^{x}}$, find the derivative matrix of the composite function $f \circ g$.
(c) Suppose $\binom{u}{v}=f\binom{x}{y}$ is an invertible coordinate transformation in $\mathbb{R}^{2}$. True or false: $\frac{\partial u}{\partial x} \frac{\partial x}{\partial u}=1$.

## Change of variables in integrals

Sample problems: (a) Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x$.
(b) Evaluate $\int_{B} z^{2} d x d y d z$, where $B$ is the ball defined by $x^{2}+y^{2}+z^{2} \leq 4$.
(c) Use the coordinate transformation $u=e^{x} \cos (y)$, $v=e^{x} \sin (y)$ to evaluate the integral $\int_{R} \sqrt{u^{2}+v^{2}} d u d v$, where $R$ is the region in the $u v$-plane corresponding to the region in the $x y$-plane defined by $0 \leq x \leq 1$ and $0 \leq y \leq \pi / 2$.

