

Divergence theorem (in the plane)

If the curve is $g(t)=\left(g_{1}(t), g_{2}(t)\right)$, then the unit normal vector is $\vec{n}=\frac{g_{2}^{\prime}(t)}{\left|g^{\prime}(t)\right|} \vec{i}-\frac{g_{1}^{\prime}(t)}{\left|g^{\prime}(t)\right|} \vec{j}$. If we write $\vec{F}=F_{1} \vec{i}+F_{2} \vec{j}$, then $\vec{F} \cdot \vec{n} d s=$ $\left(F_{1} g_{2}^{\prime}(t)-F_{2} g_{1}^{\prime}(t)\right) d t=F_{1} d y-F_{2} d x$.
Green's theorem implies that $\int_{\text {closed }} \vec{F} \cdot \vec{n} d s=$
$\iint_{\substack{\text { region } \\ \text { inside }}}\left(\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}\right) d x d y=\iint_{\substack{\text { region } \\ \text { inside }}} \nabla \cdot \vec{F} d x d y$.
The path integral is the flux of \vec{F} across the curve.
The quantity $\nabla \cdot \vec{F}$ is the divergence of \vec{F}.

