

When do potentials exist?

Example. If $\vec{F}(x, y)=(y,-x)$, then \vec{F} is not a gradient field.
In fact, if $\vec{F}(x, y)=\nabla f(x, y)$, then
$\frac{\partial f}{\partial x}=y \quad$ and $\quad \frac{\partial f}{\partial y}=-x$. Consequently,
$\frac{\partial^{2} f}{\partial y \partial x}=1 \quad$ and $\quad \frac{\partial^{2} f}{\partial x \partial y}=-1 . \quad$ Impossible.

A necessary condition for a vector field $\vec{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ (having continuous derivatives) to be a gradient field is that $\frac{\partial F_{j}}{\partial x_{k}}=\frac{\partial F_{k}}{\partial x_{j}}$ for all j and k. This says that the Jacobian matrix of \vec{F} is a symmetric matrix. If $n=3$, this says that $\nabla \times \vec{F}=0$.

The above condition is also sufficient when the domain of \vec{F} is a simply connected region.

