			Announcements
	Math 311-102 Harold P. Boas boas@tamu.edu		1. No office hour tomorrow morning (Thursday, June 30). I will, however, be available in my office after class both today and tomorrow. 2. The comprehensive final exam is $1: 00-3: 00 \mathrm{Pm}$, Tuesday, July 5, in this room.
		Man311.102	
Gauss's theorem			
	If R is a region in \mathbb{R}^{3} bounded by a closed surface S, and \vec{F} is a vector field, then $\iint_{S} \vec{F} \cdot d \vec{S}=\iiint_{R}(\nabla \cdot \vec{F}) d V$ ($d V=d x d y d z$ is the volume element, $\nabla \cdot \vec{F}$ is the divergence of \vec{F}, and the surface area element $d \vec{S}=\vec{n} d \sigma$ is taken with the outward-pointing normal vector). Example. \#12, page 437: Find $\iint_{S} \vec{F} \cdot d \vec{S}$ when $\vec{F}=x \vec{i}+y \vec{j}+z \vec{k}$ and the surface S has top $z=1-x^{2}-y^{2}$ and bottom $x^{2}+y^{2} \leq 1, z=0$. Solution. Since $\nabla \cdot \vec{F}=3$, the integral equals 3 times the volume of the enclosed region. Using cylindrical coordinates gives $3 \int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}} r d z d r d \theta=6 \pi \int_{0}^{1} r\left(1-r^{2}\right) d r=3 \pi / 2$.		
Man331-102			

