

Stokes's theorem

If the closed curve *C* is the boundary (border) of a surface *S*, then $\int_C \vec{F} \cdot d\vec{x} = \iint_S (\nabla \times \vec{F}) \cdot d\vec{S}.$

The orientations of C and S should be compatible: as you traverse C, the positive side of S should be on your left.

Example. If *S* is the surface defined by $z = 1 - x^2 - y^2$ for z > 0, and $\vec{F}(x, y, z) = -y\vec{i} + x\vec{j} + xyz\vec{k}$, find $\iint_S (\nabla \times \vec{F}) \cdot d\vec{S}$, where the surface *S* is oriented with its upward pointing normal.

Solution. You *could* work out the curl of \vec{F} and compute the surface integral as it stands. Easier is to rewrite the problem by Stokes's theorem as $\int_C \vec{F} \cdot d\vec{x}$, where *C* is the circle $x^2 + y^2 = 1$ in the *xy*-plane. That integral equals $\int_C (-y \, dx + x \, dy)$, which by Green's theorem equals twice the area of the circle, or 2π .

Remark. The theorem shows that $\iint_{S} (\nabla \times \vec{F}) \cdot d\vec{S}$ depends only on the boundary curve *C*, not on *S* itself.

June 30, 2005: slide #3