

The algebra of vectors

Vectors can be added and can be multiplied by scalars, and the operations satisfy the associative, commutative, and distributive laws.

Example. Can the vector $(607,194,-219)$ be written as a linear combination of the vectors $(1,2,3)$ and $(9,8,7)$?
Solution. Only if we are lucky, because the vector equation $x(1,2,3)+y(9,8,7)=(607,194,-219)$ translates to a system of three simultaneous equations in two unknowns:

$$
\left\{\begin{aligned}
x+9 y & =607 \\
2 x+8 y & =194 \\
3 x+7 y & =-219
\end{aligned}\right.
$$

We are lucky, for $x=-311$ and $y=102$ works in all three equations. -

Projection

The projection of a vector \vec{v} onto a vector \vec{w} is

$$
(\vec{v} \cdot \vec{u}) \vec{u}, \quad \text { where } \quad \vec{u}=\frac{\vec{w}}{|\vec{w}|} .
$$

Example. A bicycle travels 3 kilometers northeast against an easterly wind that makes a resistive force of 20 newtons. How much work is done by the cyclist?

Solution. Only the component of the force \vec{F} in the direction of the displacement \vec{d} does work, so the work equals $\vec{F} \cdot \vec{d}$ or $20 \times 3000 \times \frac{1}{\sqrt{2}} \approx 42,426$ joules.

