Topics in Applied Mathematics I

1. Write a vector representation $\vec{a}+t \vec{v}$ for the line in the plane passing through the two points $(3,11)$ and $(10,2)$.

The direction of the line is obtained by taking the difference of the vectors representing the two points: namely, $(10-3) \vec{i}+(2-11) \vec{j}=$ $7 \vec{i}-9 \vec{j}$. The vector \vec{v} can be any non-zero multiple of this difference. For example, $-7 \vec{i}+9 \vec{j}$ is another possible choice for \vec{v}.
The vector \vec{a} can be taken to be any point on the line. In particular, either of the given points will serve. So two of the correct answers are $(3 \vec{i}+11 \vec{j})+t(7 \vec{i}-9 \vec{j})$ and $(10 \vec{i}+2 \vec{j})+t(7 \vec{i}-9 \vec{j})$.
Other answers are possible, since neither \vec{a} nor \vec{v} is uniquely determined. Also, the answer could be written in various different notations, such as $(3,11)+t(7,-9)$ or $\binom{3}{11}+t\binom{7}{-9}$.
2. Two sides of a triangle in three-dimensional space are formed by the vectors $3 \vec{i}+\vec{j}+\vec{k}$ and $\vec{i}+2 \vec{k}$. Find the area of the triangle.

One method is to take $\frac{1}{2}$ the length of the cross product of the given vectors. Since $(3 \vec{i}+\vec{j}+\vec{k}) \times(\vec{i}+2 \vec{k})=2 \vec{i}-5 \vec{j}-\vec{k}$, the area of the triangle equals $\frac{1}{2} \sqrt{4+25+1}=\frac{1}{2} \sqrt{30} \approx 2.7386$.
3. How should the number m be chosen to make the two vectors $(1, m)$ and $(2,3)$ perpendicular?

The vectors are perpendicular if their dot product is equal to 0 : namely, if $2+3 m=0$. That means that $m=-2 / 3$.

Math 311-102 Quiz 1
Summer 2005

Topics in Applied Mathematics I

4. Find a reduced matrix equivalent to the matrix $\left(\begin{array}{lll}0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 0 & 3\end{array}\right)$.

Dividing each row by a suitable constant reduces the matrix to $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$.
Subtracting the top row from the bottom row reduces the matrix to $\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. This matrix is a correct answer, and so is any of the six permutations (rearrangements) of the rows.
The standard "echelon form" of the answer is $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
5. Either express the vector $(1,2,3)$ as a linear combination of the vectors $(1,0,1),(1,1,0)$, and $(1,1,1)$ or show that it is impossible to do so.

The goal is to solve $x\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+y\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ for x, y, and z.
Subtracting the second row from the first row gives the equivalent system $x\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)+y\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{r}-1 \\ 2 \\ 3\end{array}\right)$. Subtracting the first row from the third row gives $x\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+y\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right)$. Subtracting the third row from the second row gives $x\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)+y\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)+z\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)=\left(\begin{array}{r}-1 \\ -2 \\ 4\end{array}\right)$. So $x=-1, y=-2, z=4$, and $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=-\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)-2\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)+4\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$.
Other solution strategies are possible, but the final answer is unique.

