Topics in Applied Mathematics I

We did these exercises in groups.

1. (Exercise 30 on page 45)
(a) The speed is the length of the velocity vector $10 \vec{i}+20 \vec{j}$: namely, $10 \sqrt{5}$.
(b) Two sides of the triangle are $\vec{u}=(-2,2,0)-(0,0,5)=(-2,2,-5)$ and $\vec{v}=(3,-4,0)-(0,0,5)=(3,-4,-5)$. Then $\frac{1}{2} \vec{v} \times \vec{u}$, which equals $(15,25 / 2,-1)$, is a vector perpendicular to the triangle with length equal to the area of the triangle. The flux of air through the triangle equals the dot product of the velocity vector $(10,20,0)$ with the vector $(15,25 / 2,-1)$: namely, 400.
2. (Exercises 18 and 20 on page 100)
3. If A^{2} equals the zero matrix, it need not be the case that A equals the zero matrix. For example, $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
4. If $A^{2}=O$, then $(I-A)(I+A)=I^{2}-A^{2}=I$. Hence $(I+A)^{-1}=$ $(I-A)$.
5. (Exercise 38 on page 100)

If $p(x)=a+b x+c x^{2}$, then the equations $p(-1)=r, p(0)=s$, and $p(1)=t$ translate to the matrix equation $\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{l}r \\ s \\ t\end{array}\right)$. The matrix $\left(\begin{array}{rrr}1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right)$ is invertible with inverse $\left(\begin{array}{rrr}0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2}\end{array}\right)$, so there is a unique vector (a, b, c) for every prescribed vector (r, s, t) : $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{rrr}0 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{1}{2}\end{array}\right)\left(\begin{array}{l}r \\ s \\ t\end{array}\right)$. In particular, when $(r, s, t)=(1,0,1)$, we get $(a, b, c)=(0,0,1)$, corresponding to the polynomial x^{2}.

Topics in Applied Mathematics I

4. (Exercises 38 and 40 on page 119)
5. A subspace always contains the vector $\overrightarrow{0}$. If a subspace contains more than one vector, then the subspace contains some non-zero vector \vec{v}, hence all scalar multiples of \vec{v}. Those scalar multiples describe a line through the origin.
6. Every subspace containing a non-zero vector contains a line (by the preceding problem), hence contains some vectors of lengths exceeding 1.
There is, however, one subspace that does satisfy the property that $|\vec{x}| \leq 1$ for all \vec{x} in the subspace: namely, the subspace consisting of just the vector $\overrightarrow{0}$.
