Topics in Applied Mathematics I

The following problems all concern the matrix $A=\left(\begin{array}{rrr}-4 & -4 & 8 \\ 2 & 2 & -2 \\ -3 & -3 & 7\end{array}\right)$.

1. Find the eigenvalues of the matrix A.

Set $0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}-4-\lambda & -4 & 8 \\ 2 & 2-\lambda & -2 \\ -3 & -3 & 7-\lambda\end{array}\right|$. To simplify the computation of the determinant, subtract the second column from the first column to get $\left|\begin{array}{ccc}-\lambda & -4 & 8 \\ \lambda & 2-\lambda & -2 \\ 0 & -3 & 7-\lambda\end{array}\right|$. Add the first row to the second row to get $\left|\begin{array}{ccc}-\lambda & -4 & 8 \\ 0 & -2-\lambda & 6 \\ 0 & -3 & 7-\lambda\end{array}\right|$. Now expand on the first column. The characteristic equation becomes $0=-\lambda[(-2-\lambda)(7-\lambda)+18]=$ $-\lambda\left(\lambda^{2}-5 \lambda+4\right)=-\lambda(\lambda-1)(\lambda-4)$. Therefore the three eigenvalues are 0,1 , and 4 .
2. For each eigenvalue, find a corresponding eigenvector.

For $\lambda=0$, solve the equation $(A-0 I) \vec{v}=0$ by row reducing:
$\left(\begin{array}{rrr}-4 & -4 & 8 \\ 2 & 2 & -2 \\ -3 & -3 & 7\end{array}\right) \rightarrow\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$, so $\vec{v}=\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)$.
For $\lambda=1$, solve the equation $(A-1 I) \vec{v}=0$ by row reducing:
$\left(\begin{array}{rrr}-5 & -4 & 8 \\ 2 & 1 & -2 \\ -3 & -3 & 6\end{array}\right) \rightarrow\left(\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right)$, so $\vec{v}=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)$.
For $\lambda=4$, solve the equation $(A-4 I) \vec{v}=0$ by row reducing:

$$
\left(\begin{array}{rrr}
-8 & -4 & 8 \\
2 & -2 & -2 \\
-3 & -3 & 3
\end{array}\right) \rightarrow\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \text {, so } \vec{v}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) .
$$

3. Find a matrix U such that $U^{-1} A U$ is equal to a diagonal matrix D.

Topics in Applied Mathematics I

The matrix U should have the eigenvectors as its columns, so $U=$ $\left(\begin{array}{rrr}1 & 0 & 1 \\ -1 & 2 & 0 \\ 0 & 1 & 1\end{array}\right)$. Then $U^{-1} A U$ will be the diagonal matrix $D=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$ with the eigenvalues on the diagonal.
You can compute that $U^{-1}=\left(\begin{array}{rrr}2 & 1 & -2 \\ 1 & 1 & -1 \\ -1 & -1 & 2\end{array}\right)$ and then verify that indeed $U^{-1} A U=D$ by carrying out the matrix multiplication.
4. Write the vector $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ as a linear combination of the eigenvectors.

If $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=a\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)+b\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)+c\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$, then $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=U^{-1}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. Using the expression for U^{-1} written above gives $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{r}-2 \\ 0 \\ 3\end{array}\right)$. Thus $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=-2\left(\begin{array}{r}1 \\ -1 \\ 0\end{array}\right)+3\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$.
5. Find a matrix B such that $B^{2}=A$.

Hint: Observe that $U^{-1} B^{2} U=\left(U^{-1} B U\right)^{2}$.
Since $D=U^{-1} A U=\left(U^{-1} B U\right)^{2}$, and since D is the square of the $\operatorname{matrix}\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$, we can set $U^{-1} B U=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$ or, equivalently, $B=U\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right) U^{-1}$. Computing this matrix product gives the answer $B=\left(\begin{array}{rrr}-2 & -2 & 4 \\ 2 & 2 & -2 \\ -1 & -1 & 3\end{array}\right)$. You can multiply out B^{2} to check the answer.

