Math 311-102 Quiz 6
Summer 2005

Topics in Applied Mathematics I

1. Does the formula $\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle=x_{1} y_{1}$ determine an inner product on the vector space \mathbb{R}^{2} ? Explain why or why not.
(This is exercise 4 on page 158 of the textbook.)

An inner product is supposed to have three properties: positivity, symmetry, and linearity (linearity = additivity \& homogeneity). Although the formula satisfies the properties of symmetry and linearity, it fails the property of positivity. For example, the vector $(0,1)$ is not the zero vector, yet $\langle(0,1),(0,1)\rangle=0$. Thus the formula does not determine an inner product.
2. Suppose $f(t)=(t \cos (t), t \sin (t))$ (a parametric representation of a curve in the plane). Find a parametric representation for the tangent line to the curve at the point where $t=\pi / 2$.
(This is exercise 2 on page 182 of the textbook.)
The point on the curve is $f(\pi / 2)$ or $(0, \pi / 2)$. The direction of the tangent line is $f^{\prime}(\pi / 2)$ or $\left.(\cos (t)-t \sin (t), \sin (t)+t \cos (t))\right|_{\pi / 2}$ or $(-\pi / 2,1)$. A parametric representation of the tangent line in terms of parameter s is therefore $(0, \pi / 2)+s(-\pi / 2,1)$.
The answer is not unique. One could, for example, replace the vector $(-\pi / 2,1)$ by its negative or by any scalar multiple of itself.
3. Suppose $g(u, v)=(u, v, u v)$ (a parametric representation of a surface in \mathbb{R}^{3}). Find two linearly independent vectors tangent to the surface at the point where $u=1$ and $v=1$.
(This is exercise 8 on page 211 of the textbook.)

We actually talked about this problem at the beginning of class (in response to a question).
One tangent vector is $\frac{\partial g}{\partial u}(1,1)=\left.(1,0, v)\right|_{(1,1)}=(1,0,1)$. Another tangent vector is $\frac{\partial g}{\partial v}(1,1)=\left.(0,1, u)\right|_{(1,1)}=(0,1,1)$. These vectors are not scalar multiples of each other, so they are linearly independent.

Topics in Applied Mathematics I

4. Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{u}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ and $\vec{x}_{0}=(2,1)$. Find the directional derivative of the function f in the direction of the unit vector \vec{u} at the point \vec{x}_{0}.
(This is exercise 2 on page 236 of the textbook.)
We need to compute the quantity $\nabla f\left(\vec{x}_{0}\right) \cdot \vec{u}$.
Now $\nabla f\left(\vec{x}_{0}\right)=\left.(2 x,-2 y)\right|_{(2,1)}=(4,-2)$, so $\nabla f\left(\vec{x}_{0}\right) \cdot \vec{u}=(4,-2)$. $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\frac{2}{\sqrt{2}}=\sqrt{2}$.
5. Suppose $f(u, v, w)=\left(\begin{array}{c}u v \\ v w \\ w u\end{array}\right)$. Find the derivative matrix f^{\prime} (the Jacobian matrix).
(This is exercise 7 on page 244 of the textbook.)

The rows of the derivative matrix are the gradients of the component functions, so the matrix is $\left(\begin{array}{ccc}\frac{\partial(u v)}{\partial u} & \frac{\partial(u v)}{\partial v} & \frac{\partial(u v)}{\partial w} \\ \frac{\partial(v w)}{\partial u} & \frac{\partial(v w)}{\partial v} & \frac{\partial(v w)}{\partial w} \\ \frac{\partial(w u)}{\partial u} & \frac{\partial(w u)}{\partial v} & \frac{\partial(w u)}{\partial w}\end{array}\right)=\left(\begin{array}{ccc}v & u & 0 \\ 0 & w & v \\ w & 0 & u\end{array}\right)$.

