Topics in Applied Mathematics I

We did these exercises in groups.

1. (Exercise 3, page 408)

By Green's theorem, $\oint_{\gamma} y d x+x^{2} d y=\iint_{R}(2 x-1) d x d y$, where R is the interior of the rectangle. This integral equals $\int_{0}^{1} \int_{0}^{1}(2 x-1) d x d y=0$.
2. (Exercise 7, page 408)

By Green's theorem, $\oint_{\gamma}(x-y) d x+(x+y) d y=\iint_{T} 2 d x d y$, where T is the interior of the triangle. The answer is therefore twice the area of the triangle, or 1.
3. (Exercise 9, page 408)

By Green's theorem, the clockwise integral $\int_{c}\left(x^{2}-y^{2}\right) d x+\left(x^{2}+y^{2}\right) d y$ is equal to $-\iint_{R}(2 x+2 y) d x d y$, where R is the interior of the unit circle. By symmetry, this integral is equal to 0 .
4. (Exercise 11, page 408)

By Green's theorem, $\oint_{\gamma}(-y d x+x d y)=\iint_{D} 2 d x d y$, where D is the region inside the simple closed curve γ. The latter integral represents 2 times the area of D. Divide by 2 to get the desired result.

