Topics in Applied Mathematics I

1. Let γ be the path consisting of line segments in the plane from $(0,0)$ to $(1,0)$, from $(1,0)$ to $(1,2)$, and from $(1,2)$ back to $(0,0)$. Evaluate the integral

$$
\int_{\gamma}\left(-x y+\sin \left(x^{2}\right)\right) d x+\left(\cos ^{2} y\right) d y .
$$

(This is exercise 2 on page 457 in the textbook.)
By Green's theorem, the integral equals $\iint_{T} x d x d y$, where T is the triangle with the indicated vertices. The hypotenuse of the triangle is part of the line $y=2 x$, so this area integral equals $\int_{0}^{1} x\left(\int_{0}^{2 x} d y\right) d x=$ $\int_{0}^{1} 2 x^{2} d x=2 / 3$.
2. Find a function f such that $\nabla f=\left(3 x^{2} y, x^{3}+3 y^{2}\right)$.
(This is exercise 1(a) on page 457 in the textbook.)
Since $\frac{\partial f}{\partial x}=3 x^{2} y$, there must be a function $g(y)$ such that $f(x, y)=$ $x^{3} y+g(y)$. Then $x^{3}+3 y^{2}=\frac{\partial f}{\partial y}=x^{3}+g^{\prime}(y)$, so $g(y)=y^{3}+c$ for some constant c. Thus $f(x, y)=x^{3} y+y^{3}+c$.

Topics in Applied Mathematics I

3. If C is a simple closed curve in the plane bounding a region R, which one of the following integrals is certain to be equal to 0? Explain why.
(a) $\int_{C} x d x$
(b) $\int_{C} y d x$
(c) $\int_{C} x d y$
(d) $\int_{C} x y d y$

By Green's theorem, the first integral equals $\iint_{R} 0 d x d y$, so it is certain to be equal to 0 .
The second integral equals the negative of the area of R, so it is never equal to 0 .
The third integral equals the area of R, so it is never equal to 0 .
The fourth integral equals $\iint_{R} y d x d y$, which may or may not equal 0 , depending on the region R.
4. Let $\vec{G}(x, y, z)=(y, z, x)$. Is \vec{G} a gradient field in \mathbb{R}^{3} ? Explain why or why not.
(This is exercise 4 on page 418 in the textbook.)

The derivative matrix of \vec{G} equals $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$. This matrix is not symmetric, so \vec{G} is not a gradient field.
5. Suppose γ_{1} and γ_{2} are two paths in the plane joining the points $(0,0)$ and $(2,3)$. Must $\int_{\gamma_{1}} y d x+x d y$ be equal to $\int_{\gamma_{2}} y d x+x d y$? Explain why or why not.
(This is a variation of exercise 5 on page 408 in the textbook.)

If $f(x, y)=x y$, then $\nabla f \cdot d \vec{x}=y d x+x d y$. Consequently, the value of the integral $\int_{\gamma} y d x+x d y=f(2,3)-f(0,0)=6$. The answer is independent of the path γ, as long as γ starts at $(0,0)$ and ends at $(2,3)$.

