Exam 1, February 11

This is a personalized examination. Write down the last four digits of your student identification number and assign the corresponding numbers to the Greek letters α, β, γ, and δ.

1. Solve the heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad 0<x<\pi, \quad 0<t
$$

with the boundary conditions $u(0, t)=\alpha$ and $u(\pi, t)=\beta$ and the initial condition $u(x, 0)=\gamma x+\delta$, where α, β, γ, and δ are the constants you identified in the table above.
2. A (reasonable) function f that has period 2π has an associated Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

You are used to finding the Fourier coefficients if you know the function. This problem addresses the inverse problem of finding the function given the Fourier coefficients.
Construct a function f (with period 2π) that has all of the following properties:
(a) $f(x)=\alpha$ when $-\pi<x<0$;
(b) the Fourier sine coefficient b_{1} is equal to β;
(c) the Fourier cosine coefficient a_{γ} is equal to δ;
where α, β, γ, and δ are the constants you identified in the table above.

