Exam 2, March 20

1. Solve the heat equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad 0<x<\infty, \quad 0<t<\infty
$$

on the semi-infinite interval $(0, \infty)$, where the boundary condition is $u(0, t)=0$, and the initial condition is given by the piecewise-defined function

$$
u(x, 0)= \begin{cases}\sin x, & \text { if } 0 \leq x \leq \pi \\ 0, & \text { if } \pi \leq x\end{cases}
$$

You may leave one unevaluated Fourier integral in the answer.
2. The acoustical vibration of air in a column, as in an organ pipe, may be modeled by the wave equation

$$
\frac{\partial^{2} p}{\partial x^{2}}=\frac{\partial^{2} p}{\partial t^{2}}, \quad 0<x<\pi, \quad 0<t<\infty
$$

where $p(x, t)$ denotes the air pressure at position x and time t.
Suppose that both ends of the pipe are open, so that the air pressure at the ends is always equal to the air pressure p_{0} of the environment. In other words, the boundary conditions are $p(0, t)=p_{0}$ and $p(\pi, t)=p_{0}$. (Notice that these boundary conditions are not homogeneous ones.)
Suppose that at time $t=0$, the organ player sets the air into motion according to the initial conditions

$$
p(x, 0)=p_{0} \quad \text { and } \quad \frac{\partial p}{\partial t}(x, 0)=\cos x \quad \text { when } 0<x<\pi
$$

Use either d'Alembert's method or the method of separation of variables to find the solution for $p(x, t)$.

You may wish to use the following trigonometric identities:

$$
\begin{aligned}
(\sin A)(\sin B) & =\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
(\sin A)(\cos B) & =\frac{1}{2}(\sin (A-B)+\sin (A+B)) \\
(\cos A)(\cos B) & =\frac{1}{2}(\cos (A-B)+\cos (A+B))
\end{aligned}
$$

