Exam 3, April 15

1. Solve the following boundary value problem for the potential equation (Laplace's equation) on a square:

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \quad \text { for } \quad 0<x<\pi \quad \text { and } \quad 0<y<\pi
$$

with the boundary conditions

$$
\begin{array}{llll}
u(0, y)=1 & \text { and } & \frac{\partial u}{\partial x}(\pi, y)=0 \quad \text { when } \quad 0<y<\pi \\
u(x, 0)=1 & \text { and } & \frac{\partial u}{\partial y}(x, \pi)=0 \quad \text { when } \quad 0<x<\pi
\end{array}
$$

2. Do one of the following two problems.
(a) Recall that the Legendre polynomial $P_{n}(x)$ is a polynomial solution of degree n of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0
$$

normalized by the condition $y(1)=1$. Compute $P_{4}(x)$.
(b) The Hermite polynomial $H_{n}(x)$ is a polynomial solution of degree n of the differential equation

$$
y^{\prime \prime}-2 x y^{\prime}+2 n y=0
$$

where n is a positive integer. Show that the Hermite polynomials satisfy the weighted orthogonality relation

$$
\int_{-\infty}^{\infty} H_{n}(x) H_{m}(x) e^{-x^{2}} d x=0
$$

when $n \neq m$.
Hint: observe that $\left(e^{-x^{2}} y^{\prime}\right)^{\prime}=\left(y^{\prime \prime}-2 x y^{\prime}\right) e^{-x^{2}}$.

