Final Exam, May 6

1. Determine (not identically zero) polynomials p_0 , p_1 , and p_2 of degrees 0, 1, and 2 respectively that are mutually orthogonal on the interval [0, 1]: namely,

$$\int_0^1 p_0(x)p_1(x) \, dx = 0,$$

$$\int_0^1 p_0(x)p_2(x) \, dx = 0,$$

$$\int_0^1 p_1(x)p_2(x) \, dx = 0.$$

Suggestion: You can do this either bare hands, or by applying to the functions 1, x, and x^2 the so-called Gram-Schmidt orthogonalization procedure (that is, subtract from each vector its projection onto the subspace generated by the previous vectors).

2. Solve the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + 2\frac{\partial u}{\partial x} = \frac{\partial^2 u}{\partial t^2} \quad \text{for } 0 < x < 1 \text{ and } 0 < t$$

with the boundary conditions

$$u(0,t) = 0$$

 $u(1,t) = 0$ for $0 < t$

and the initial conditions

$$u(x,0) = 0$$

$$\frac{\partial u}{\partial t}(x,0) = 1$$
 for $0 < x < 1$.

Reminders: When a and b are real numbers, $e^{a+ib} = (\cos b + i \sin b) \cdot e^a$; and when k and λ are real numbers (not both zero),

$$\int e^{kx} \sin(\lambda x) \, dx = \frac{e^{kx} (k \sin(\lambda x) - \lambda \cos(\lambda x))}{k^2 + \lambda^2}.$$