Final Exam, May 6

1. Determine (not identically zero) polynomials p_{0}, p_{1}, and p_{2} of degrees 0,1 , and 2 respectively that are mutually orthogonal on the interval $[0,1]$: namely,

$$
\begin{aligned}
& \int_{0}^{1} p_{0}(x) p_{1}(x) d x=0 \\
& \int_{0}^{1} p_{0}(x) p_{2}(x) d x=0 \\
& \int_{0}^{1} p_{1}(x) p_{2}(x) d x=0 .
\end{aligned}
$$

Suggestion: You can do this either bare hands, or by applying to the functions 1, x, and x^{2} the so-called Gram-Schmidt orthogonalization procedure (that is, subtract from each vector its projection onto the subspace generated by the previous vectors).
2. Solve the partial differential equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+2 \frac{\partial u}{\partial x}=\frac{\partial^{2} u}{\partial t^{2}} \quad \text { for } 0<x<1 \text { and } 0<t
$$

with the boundary conditions

$$
\begin{aligned}
& u(0, t)=0 \\
& u(1, t)=0
\end{aligned} \quad \text { for } 0<t
$$

and the initial conditions

$$
\begin{aligned}
u(x, 0) & =0 \\
\frac{\partial u}{\partial t}(x, 0) & =1 \quad \text { for } 0<x<1 .
\end{aligned}
$$

Reminders: When a and b are real numbers, $e^{a+i b}=(\cos b+i \sin b) \cdot e^{a}$; and when k and λ are real numbers (not both zero),

$$
\int e^{k x} \sin (\lambda x) d x=\frac{e^{k x}(k \sin (\lambda x)-\lambda \cos (\lambda x))}{k^{2}+\lambda^{2}} .
$$

