Linear Algebra

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

1. Jordan is using a TI-89 calculator to help analyze the linear system $A \mathbf{x}=\mathbf{b}$, where A is a certain 3×4 matrix and \mathbf{b} is a certain 3×1 matrix (a column vector). Jordan applies the rref command to the augmented coefficient matrix and obtains the result

$$
\left[\begin{array}{rrrrr}
1 & 0 & 0 & 2 & 4 \\
0 & 0 & 1 & 3 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

(Jordan's calculator does not show a vertical bar to separate the last column from the coefficient matrix.) Discuss what information Jordan can deduce about the original linear system.
[For instance, is the system underdetermined or overdetermined? consistent or inconsistent? Is there a unique solution? Does Jordan have enough information to write down the solution(s)?]
2. Consider the system of three simultaneous equations

$$
\left\{\begin{aligned}
x_{1}+x_{2} & =2 \\
a x_{1}+a x_{2} & =3 a \\
b x_{1}+b x_{2}+a x_{3} & =4+b
\end{aligned}\right.
$$

for the unknowns x_{1}, x_{2}, and x_{3}. Find all values of a and b for which this system of equations is consistent.
Explain your reasoning in complete sentences.
3. Suppose

$$
A=\left[\begin{array}{lll}
0 & a & 1 \\
1 & 0 & 1 \\
0 & 0 & a
\end{array}\right]
$$

Determine the value(s) of a for which the matrix A is invertible. [If you do a computation to solve this problem, say what computation you are doing and why.]

Linear Algebra

4. Suppose that A is an $n \times n$ matrix, and S is an invertible $n \times n$ matrix. Show that $\operatorname{det}\left(S^{-1} A S\right)=\operatorname{det}(A)$.
5. Maude is studying the set of all polynomials in x of odd degree. Help Maude decide if this set forms a vector space (under the usual operations of addition and scalar multiplication).
