Linear Algebra

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

1. Recall that P_{3} denotes the vector space of polynomials of degree less than 3. Let S denote the two-dimensional subspace of P_{3} consisting of polynomials $p(x)$ such that $p(0)=p(1)$. Find a basis for S, and explain how you know that your answer is a basis.
2. Recall that $R^{2 \times 2}$ denotes the vector space of all 2×2 matrices with real entries.
(a) Show that the set of all symmetric 2×2 matrices with real entries is a subspace of $R^{2 \times 2}$. (Recall that a matrix A is symmetric if $A=A^{T}$.)
(b) What is the dimension of this subspace? How do you know?
3. Give an example of a linear transformation $L: R^{2} \rightarrow R^{2}$ whose kernel equals the span of the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. (There are many correct answers.)
4. Suppose that $\mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. If $L: R^{2} \rightarrow R^{2}$ is a linear transformation such that $L\left(\mathbf{u}_{1}\right)=\mathbf{u}_{1}$ and $L\left(\mathbf{u}_{2}\right)=2 \mathbf{u}_{2}$, find the matrix representation of L with respect to the standard basis.
5. Rose and Colin are studying a certain 3×4 matrix A. They use a TI-89 calculator to find the following reduced row echelon forms for the matrix A and for the transpose A^{T} :

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Use this information to say as much as you can about the null space, the row space, and the column space of the original matrix A.
[Can you determine the dimension of each subspace? Can you determine a basis for each subspace?]

