Exam 2 Linear Algebra

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

- 1. Recall that P_3 denotes the vector space of polynomials of degree less than 3. Let S denote the two-dimensional subspace of P_3 consisting of polynomials p(x) such that p(0) = p(1). Find a basis for S, and explain how you know that your answer is a basis.
- 2. Recall that $R^{2\times 2}$ denotes the vector space of all 2×2 matrices with real entries.
 - (a) Show that the set of all symmetric 2×2 matrices with real entries is a subspace of $R^{2\times 2}$. (Recall that a matrix A is symmetric if $A = A^T$.)
 - (b) What is the dimension of this subspace? How do you know?
- 3. Give an example of a linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$ whose kernel equals the span of the vector $\begin{bmatrix} 1\\1 \end{bmatrix}$. (There are many correct answers.)
- 4. Suppose that $\mathbf{u}_1 = \begin{bmatrix} 2\\ 3 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$. If $L: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation such that $L(\mathbf{u}_1) = \mathbf{u}_1$ and $L(\mathbf{u}_2) = 2\mathbf{u}_2$, find the matrix representation of L with respect to the *standard* basis.
- 5. Rose and Colin are studying a certain 3×4 matrix A. They use a TI-89 calculator to find the following reduced row echelon forms for the matrix A and for the transpose A^T :

Г	1	1	0	0		[1	0	1	
_ I				$\begin{bmatrix} 0\\1\\0 \end{bmatrix}$	1	0	1	0	
	v				and	0	0	0	•
L	0	0	0	0		0	0 0	0	

Use this information to say as much as you can about the null space, the row space, and the column space of the original matrix A. [Can you determine the dimension of each subspace? Can you determine a basis for each subspace?]