Math 323

Linear Algebra

Harold P. Boas

boas@tamu.edu

November 20, 2008

Example of eigenvectors

The matrix $A=\left(\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right)$ defines a linear transformation of R^{2} that is easy to understand. The transformation stretches the vector $\mathbf{u}_{1}=\binom{1}{0}$ by a factor of 2 and stretches the vector $\mathbf{u}_{2}=\binom{1}{1}$ by a factor of 3.

The vectors \mathbf{u}_{1} and \mathbf{u}_{2} are called eigenvectors, and the scale factors 2 and 3 are the corresponding eigenvalues.

The transformation is particularly simple to describe in the basis [$\mathbf{u}_{1}, \mathbf{u}_{2}$]: namely, the matrix $U^{-1} A U$ is the diagonal matrix $\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$.

Computing eigenvalues (continued)

Example. The matrix $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$ has other eigenvalues besides the number 3 . Find them.
Solution. The condition for a number λ to be an eigenvalue of A is that the matrix $A-\lambda /$ has a non-trivial nullspace.
Equivalently, $\operatorname{det}(A-\lambda I)=0$, the characteristic equation:

$$
\begin{aligned}
0 & =\left|\begin{array}{ccc}
12-\lambda & 4 & -5 \\
-8 & 0-\lambda & 5 \\
10 & 4 & -3-\lambda
\end{array}\right| \begin{array}{c}
R_{1} \rightarrow \\
R_{1}+R_{2}
\end{array}\left|\begin{array}{ccc}
4-\lambda & 4-\lambda & 0 \\
-8 & -\lambda & 5 \\
10 & 4 & -3-\lambda
\end{array}\right| \\
& C_{2} \rightarrow \\
C_{2}-C_{1} & \left.\begin{array}{ccc}
4-\lambda & 0 & 0 \\
-8 & 8-\lambda & 5 \\
10 & -6 & -3-\lambda
\end{array}|=(4-\lambda)| \begin{array}{cc}
8-\lambda & 5 \\
-6 & -3-\lambda
\end{array} \right\rvert\, \\
& =(4-\lambda)\left(\lambda^{2}-5 \lambda+6\right)=(4-\lambda)(\lambda-3)(\lambda-2) .
\end{aligned}
$$

Therefore the eigenvalues of A are 4,3 , and 2 .

Exercise

If $A=\left(\begin{array}{rrr}12 & 4 & -5 \\ -8 & 0 & 5 \\ 10 & 4 & -3\end{array}\right)$, find eigenvectors corresponding to the eigenvalues 2 and 4 .

We already know that $(1,-1,1)^{T}$ is an eigenvector with eigenvalue 3.

Answer. Vector $(4,-3,4)^{T}$ is an eigenvector with eigenvalue 4, and $(5,-5,6)^{T}$ is an eigenvector with eigenvalue 2.

Remark. $S=\left(\begin{array}{rrr}4 & 1 & 5 \\ -3 & -1 & -5 \\ 4 & 1 & 6\end{array}\right)$ is the transition matrix from an eigenvector basis to the standard basis, and $S^{-1} A S$ is a diagonal matrix with the eigenvalues 4,3 , and 2 on the diagonal.

