Linear Algebra

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

1. Recall that P_{3} denotes the vector space of polynomials of degree less than 3. Let S denote the two-dimensional subspace of P_{3} consisting of polynomials $p(x)$ such that $p(0)=p(1)$. Find a basis for S, and explain how you know that your answer is a basis.

Solution. A polynomial in P_{3} has the form $a x^{2}+b x+c$ for certain constants a, b, and c. Such a polynomial belongs to the subspace S if $a 0^{2}+b 0+c=a 1^{2}+b 1+c$, or $c=a+b+c$, or $0=a+b$, or $b=-a$. Thus the polynomials in the subspace S have the form $a\left(x^{2}-x\right)+c$. In other words, the two polynomials $x^{2}-x$ and 1 are a spanning set for S. These two polynomials are also a linearly independent set since neither of these two polynomials is a scalar multiple of the other. Therefore the set $\left\{x^{2}-x, 1\right\}$ is a basis for the subspace S.
2. Recall that $R^{2 \times 2}$ denotes the vector space of all 2×2 matrices with real entries.
(a) Show that the set of all symmetric 2×2 matrices with real entries is a subspace of $R^{2 \times 2}$. (Recall that a matrix A is symmetric if $A=A^{T}$.)
(b) What is the dimension of this subspace? How do you know?

Solution. This problem is essentially problem 6 from Chapter Test B for Chapter 3 on page 173 of the textbook.
(a) A symmetric 2×2 matrix has the form $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$ for certain scalars a, b, and c. Evidently the sum of two matrices of this form is another matrix of the same type, and a scalar multiple of such a matrix is another matrix of the same type. Thus the set of symmetric matrices is closed under addition and closed under scalar multiplication, so the symmetric matrices do form a subspace of the space of 2×2 matrices.

Linear Algebra

(b) Since $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)=a\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+b\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)+c\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$, we see that the three symmetric matrices $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ form a spanning set for the subspace of all symmetric matrices. Moreover, these three matrices are a linearly independent set since each has a 1 where the other two have 0's. Thus we have identified a basis for the subspace of symmetric matrices. This basis consists of three elements, so the dimension of our subspace equals three.
3. Give an example of a linear transformation $L: R^{2} \rightarrow R^{2}$ whose kernel equals the span of the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. (There are many correct answers.)

Solution. There are infinitely many correct solutions. Two examples written as formulas are

$$
L\binom{x_{1}}{x_{2}}=\binom{x_{1}-x_{2}}{0} \quad \text { and } \quad L\binom{x_{1}}{x_{2}}=\binom{x_{1}-x_{2}}{2 x_{2}-2 x_{1}} .
$$

The same two examples written in terms of matrix multiplication are

$$
L(\mathbf{x})=\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right) \mathbf{x} \quad \text { and } \quad L(\mathbf{x})=\left(\begin{array}{rr}
1 & -1 \\
-2 & 2
\end{array}\right) \mathbf{x} .
$$

4. Suppose that $\mathbf{u}_{1}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. If $L: R^{2} \rightarrow R^{2}$ is a linear transformation such that $L\left(\mathbf{u}_{1}\right)=\mathbf{u}_{1}$ and $L\left(\mathbf{u}_{2}\right)=2 \mathbf{u}_{2}$, find the matrix representation of L with respect to the standard basis.

Solution.

Method 1 (using similar matrices). The matrix representation of the transformation L with respect to the given nonstandard basis is $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$. The transition matrix from the nonstandard basis to the standard basis is $\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)$. The transition matrix from the standard basis to

Linear Algebra

the nonstandard basis is the inverse matrix $\left(\begin{array}{ll}2 & 1 \\ 3 & 2\end{array}\right)^{-1}$, or $\left(\begin{array}{rr}2 & -1 \\ -3 & 2\end{array}\right)$. The matrix representation of L with respect to the standard basis is then

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right),
$$

which works out to $\left(\begin{array}{ll}-2 & 2 \\ -6 & 5\end{array}\right)$.

Check:

$$
\begin{aligned}
& \left(\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right)\binom{2}{3}=\binom{2}{3}, \\
& \left(\begin{array}{ll}
-2 & 2 \\
-6 & 5
\end{array}\right)\binom{1}{2}=\binom{2}{4}=2\binom{1}{2} .
\end{aligned}
$$

Method 2 (bare hands). We seek a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{2}{3}=\binom{2}{3} \quad \text { and } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1}{2}=\binom{2}{4} .
$$

Multiplying out these relations produces four linear equations for the four unknowns a, b, c, and d. Solving the equations yields $a=-2$, $b=2, c=-6$, and $d=5$.

Method 3 (working directly in standard coordinates). Observe that $\mathbf{e}_{1}=\binom{1}{0}=2\binom{2}{3}-3\binom{1}{2}=2 \mathbf{u}_{1}-3 \mathbf{u}_{2}$, so

$$
L\left(\mathbf{e}_{1}\right)=2 L\left(\mathbf{u}_{1}\right)-3 L\left(\mathbf{u}_{2}\right)=2 \mathbf{u}_{1}-6 \mathbf{u}_{2}=\binom{-2}{-6} .
$$

This vector is the first column of the matrix representation of L in the standard basis. Similarly, $\mathbf{e}_{2}=\binom{0}{1}=-\binom{2}{3}+2\binom{1}{2}=-\mathbf{u}_{1}+2 \mathbf{u}_{2}$, so

$$
L\left(\mathbf{e}_{2}\right)=-L\left(\mathbf{u}_{1}\right)+2 L\left(\mathbf{u}_{2}\right)=-\mathbf{u}_{1}+4 \mathbf{u}_{2}=\binom{2}{5} .
$$

Linear Algebra

This vector is the second column of the matrix representation of L in the standard basis.
5. Rose and Colin are studying a certain 3×4 matrix A. They use a TI-89 calculator to find the following reduced row echelon forms for the matrix A and for the transpose A^{T} :

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Use this information to say as much as you can about the null space, the row space, and the column space of the original matrix A.
[Can you determine the dimension of each subspace? Can you determine a basis for each subspace?]

Solution. From the reduced row echelon form of the matrix A, you can read off that the two vectors $\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$ form a basis for the row space of A, which thus has dimension 2 .
It follows that the column space of A also has dimension 2 , and the first and third columns of the original matrix A form a basis for the column space of A. Although the original matrix A is not given, we can nonetheless exhibit a basis for the column space by observing that the column space of A equals the row space of the transpose matrix A^{T}. The reduced row echelon form for A^{T} reveals that the two vectors $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ form a basis for the column space of A. (Notice that in this example, the first and third columns of the reduced row echelon form of A definitely do not form a basis for the column space of A.)
Either from the rank-nullity theorem or from observing the two free variables in the reduced row echelon form of A, we deduce that the null

Linear Algebra

space of A has dimension 2. The two vectors $\left(\begin{array}{r}1 \\ -1 \\ 0 \\ 0\end{array}\right)$ and $\left(\begin{array}{r}0 \\ 0 \\ 1 \\ -1\end{array}\right)$ form a basis for the null space.

