
Math 407-500 Exam 2

Complex Variables
Spring 2008

Instructions Solve any seven of the following eight problems. Please
write your solutions on your own paper. Explain your reasoning in complete
sentences to maximize credit.

1. Explain why

∫
|z|=1

sin(z)

z
dz = 0.

Solution. One reason is that the function z−1 sin(z) has a removable
singularity, since limz→0 z

−1 sin(z) = 1, so the integral equals 0 by
Cauchy’s theorem.

Alternatively, Cauchy’s integral formula implies that the integral equals
2πi sin(0), which reduces to 0.

You could also apply the Residue Theorem, observing that the inte-
grand has residue equal to 0 at the origin.

2. State two of the following four theorems:

• Morera’s theorem

• Liouville’s theorem

• Rouché’s theorem

• Schwarz’s lemma.

Solution. The statements are in the textbook on pages 129, 130, 177,
and 193.

3. Give an example of a function that is analytic in the punctured plane
(meaning the set {z : z 6= 0}) and that has a simple pole when z = 0,
a double zero when z = 1, and no other zeroes or poles.

Solution. The simplest example is the rational function
(z − 1)2

z
.

4. The function
1

sin(z)
has a Laurent series expansion in powers of z

and z−1 valid when 0 < |z| < π. Determine the first two nonzero
terms of this expansion.
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Solution. Since sin(z) = z − 1
6
z3 +O(z5), it follows that

1

sin(z)
=

1

z
· 1

1− 1
6
z2 +O(z4)

=
1

z
·
(

1 +
1

6
z2 +O(z4)

)
=

1

z
+

1

6
z +O(z3).

I used the binomial series trick: 1
1−u = 1 + u + u2 + · · · when |u| < 1.

You could also do explicit long division.

5. The function
cos(z)

z3
has a pole of order 3 when z = 0. Determine the

residue of this function at the pole.

Solution. Since cos(z) = 1− 1
2
z2 +O(z4), it follows that

cos(z)

z3
=

1

z3
− 1/2

z
+O(z),

so the residue (the coefficient of the 1/z term in the Laurent series)
equals −1/2.

Alternatively, you could use the formula for the residue at a multiple
pole to compute the residue as follows:

1

2!
· d

2

dz2

[
z3 · cos(z)

z3

]
z=0

=
1

2
· d

2

dz2
cos(z)

∣∣∣∣
z=0

=
1

2
(− cos(0)) = −1

2
.

6. The TI-89 calculator says that

∫ ∞
0

1

1 + x6
dx =

π

3
. Prove this formula.

Suggestion: integrate over a “piece of pie” of angle π/3.

0 R
Solution. If γ is the illustrated contour, then there is one pole inside
(at eπi/6), so∫

γ

1

1 + z6
dz = 2πiRes

(
1

1 + z6
; eπi/6

)
=

2πi

6(eπi/6)5
=
πi

3
e−5πi/6.

On the other hand, we can parametrize the three parts of the contour
respectively by z = x (where x goes from 0 to R), z = Reiθ (where
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θ goes from 0 to π/3), and z = teπi/3 (where t goes from R to 0).
Therefore the contour integral equals∫ R

0

1

1 + x6
dx+

∫ π/3

0

1

1 +R6e6iθ
Rieiθ dθ +

∫ 0

R

1

1 + t6
eπi/3 dt.

The middle integral is O(1/R5) because∣∣∣∣ 1

1 +R6e6iθ
Rieiθ

∣∣∣∣ ≤ R

R6 − 1
(when R > 1).

Putting the pieces together, we find that

πi

3
e−5πi/6 =

(
1− eπi/3

) ∫ R

0

1

1 + x6
dx+O(1/R5).

Taking the limit as R→∞ shows that∫ ∞
0

1

1 + x6
dx =

πi

3
· e

−5πi/6

1− eπi/3
.

Now ie−5πi/6 = i(−
√

3
2
− 1

2
i) = −

√
3

2
i+ 1

2
, and 1−eπi/3 = 1−(1

2
+
√

3
2
i) =

1
2
−
√

3
2
i, so the answer indeed reduces to π

3
.

Alternatively, you could rewrite the problem as
1

2

∫ ∞
−∞

dx

1 + x6
and use

a semi-circular contour. Then you have to compute three residues (at
eπi/6, e3πi/6, and e5πi/6). Passing to the limit, you get the answer

1

2
· 2πi

(
1

6e5πi/6
+

1

6e15πi/6
+

1

6e25πi/6

)
,

which again simplifies to π
3
.

7. The Fundamental Theorem of Algebra implies that the polynomial
3z28 − 2z8 + 7z5 + 1 has 28 zeroes in the complex plane (counting
multiplicities). How many of these 28 zeroes lie in the unit disc (the
set where |z| < 1)? Explain how you know.
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Solution. The idea is to apply Rouché’s theorem. Suppose f(z) =
−7z5 and g(z) = 3z28− 2z8 + 7z5 + 1. On the unit circle where |z| = 1,
we have

|f(z) + g(z)| = |3z28 − 2z8 + 1| ≤ 3 + 2 + 1 = 6 < 7 = |f(z)|.

Thus the hypothesis of Rouché’s theorem is satisfied on the boundary
circle, and we deduce that the functions f(z) and g(z) have the same
number of zeroes inside the circle. Since f(z) has a zero of order 5 at
the origin, it follows that our original polynomial g(z) has 5 zeroes in
the unit disc (counting multiplicity).

8. Student Max conjectures that if f and g are entire functions such that
|f(z)| ≤ |g(z)| when |z| = 1, then |f(z)| ≤ |g(z)| when |z| ≤ 1. If Max’s
conjecture is correct, then prove it; otherwise, supply a counterexample
showing that Max is wrong.

Solution. Max’s conjecture is wrong. Indeed, if f(z) is the constant
function 1 and g(z) = z, then |f(z)| = |g(z)| when |z| = 1, but |f(z)| >
|g(z)| for every point z such that |z| < 1.

Nonetheless, Max’s conjecture can be salvaged by adding a supplemen-
tary hypothesis. If the function g(z) has no zeroes in the closed unit
disc, then Max’s statement does hold. Indeed, in this case the quotient
f(z)/g(z) is analytic, and its modulus is at most 1 on the boundary
circle, so the maximum-modulus principle implies that its modulus is
at most 1 everywhere in the unit disc.
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