Complex Variables

Instructions Solve any seven of the following eight problems. Please write your solutions on your own paper. Explain your reasoning in complete sentences to maximize credit.

1. Explain why $\int_{|z|=1} \frac{\sin (z)}{z} d z=0$.
2. State two of the following four theorems:

- Morera's theorem
- Liouville's theorem
- Rouché's theorem
- Schwarz's lemma.

3. Give an example of a function that is analytic in the punctured plane (meaning the set $\{z: z \neq 0\}$) and that has a simple pole when $z=0$, a double zero when $z=1$, and no other zeroes or poles.
4. The function $\frac{1}{\sin (z)}$ has a Laurent series expansion in powers of z and z^{-1} valid when $0<|z|<\pi$. Determine the first two nonzero terms of this expansion.
5. The function $\frac{\cos (z)}{z^{3}}$ has a pole of order 3 when $z=0$. Determine the residue of this function at the pole.
6. The TI-89 calculator says that $\int_{0}^{\infty} \frac{1}{1+x^{6}} d x=\frac{\pi}{3}$. Prove this formula. Suggestion: integrate over a "piece of pie" of angle $\pi / 3$.
7. The Fundamental Theorem of Algebra implies that the polynomial
 $3 z^{28}-2 z^{8}+7 z^{5}+1$ has 28 zeroes in the complex plane (counting multiplicities). How many of these 28 zeroes lie in the unit disc (the set where $|z|<1)$? Explain how you know.
8. Student Max conjectures that if f and g are entire functions such that $|f(z)| \leq|g(z)|$ when $|z|=1$, then $|f(z)| \leq|g(z)|$ when $|z| \leq 1$. If Max's conjecture is correct, then prove it; otherwise, supply a counterexample showing that Max is wrong.
