Complex Variables

Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

1. The TI-89 calculator says, reasonably enough, that

$$
\lim _{x \rightarrow 0}\left((x-1)^{1 / 3}-1\right)^{3}=-8 .
$$

Somewhat surprisingly, Maple and Mathematica say instead that

$$
\lim _{x \rightarrow 0}\left((x-1)^{1 / 3}-1\right)^{3}=1 .
$$

Use complex numbers to explain how the two different answers both can be justified mathematically.

Remark The Maple command is $\operatorname{limit}\left(\left((x-1)^{\wedge}(1 / 3)-1\right)^{\wedge} 3, x=0\right)$, and the Mathematica command is Limit $\left[\left((x-1)^{\wedge}(1 / 3)-1\right)^{\wedge} 3, x->0\right]$.
2. You know very well that

$$
\sin ^{2}(x)+\cos ^{2}(x)=1 \quad \text { for every real number } x
$$

Prove that

$$
\sin ^{2}(z)+\cos ^{2}(z)=1 \quad \text { for every complex number } z .
$$

3. Do either part (a) or part (b).
(a) Determine a (non-closed) path γ in the complex plane such that

$$
\int_{\gamma}(2 z+1) d z=-1
$$

(b) The value of the line integral $\int_{\gamma} \frac{1}{z^{2}\left(z^{2}+1\right)} d z$ depends on γ, the integration path. What are the possible values of this integral as γ varies over all simple closed curves?
4. Find an entire function $f(z)$ whose real part $u(x, y)$ equals $x^{2}-y^{2}-2 y$ (where, as usual, x and y denote the real part and the imaginary part of the complex variable z).

Complex Variables

5. Give an example of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$ that has radius of convergence equal to 3 and that represents an analytic function having no zeroes.
6. Evaluate the integral

$$
\int_{|z|=1} z^{407} \cos (1 / z) d z,
$$

where the integration curve is the unit circle with its usual counterclockwise orientation. (Recall that $\sum_{n=0}^{\infty}(-1)^{n} w^{2 n} /(2 n)!=\cos (w)$.)
7. How many solutions are there to the equation

$$
z^{4}+4=e^{-z}
$$

in the right-hand half-plane where $\operatorname{Re}(z)>0$? How do you know?
8. Do either part (a) or part (b).
(a) Either find a one-to-one conformal mapping from the punctured $\operatorname{disc}\{z: 0<|z|<1\}$ onto the annulus $\{z: 1<|z|<2\}$ or prove that none exists.
(b) Either find a one-to-one conformal mapping from the first quadrant $\{z: \operatorname{Re}(z)>0$ and $\operatorname{Im}(z)>0\}$ onto the strip $\{z:|\operatorname{Im}(z)|<1\}$ or prove that none exists.
9. For the function $\frac{1+z}{z(1-z)}$, find a Laurent series in powers of z and $\frac{1}{z}$ that converges when $0<|z|<1$.
10. The TI-89 calculator, Maple, and Mathematica all agree that

$$
\int_{0}^{\infty} \frac{x^{2}}{x^{4}+1} d x=\frac{\pi \sqrt{2}}{4}
$$

Use contour integration and residues to prove this formula.

