Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Circle the correct answer. No explanation is required.

1. If z_{1}, z_{2}, and z_{3} are three distinct complex numbers, then there is precisely one linear fractional transformation T such that $T\left(z_{1}\right)=1$, $T\left(z_{2}\right)=i$, and $T\left(z_{3}\right)=0$. True False
2. If f is an analytic function in a disc centered at z_{0}, and the derivative $f^{\prime}\left(z_{0}\right) \neq 0$, then f is conformal at $z_{0} . \quad$ True False
3. There exists a one-to-one conformal mapping from the open first quadrant onto the open unit disc. (The open first quadrant is the set $\{z$: $\operatorname{Re}(z)>0$ and $\operatorname{Im}(z)>0\}$, and the open unit disc is $\{z:|z|<1\}$.) True False
4. The two curves in the $x-y$ plane defined by the equations $x^{2}-y^{2}=1$ and $2 x y=3$ intersect orthogonally. True False
5. The linear fractional transformation $\frac{z+2}{3 z+1}$ maps the imaginary axis (together with the point at ∞) onto a circle whose radius equals $5 / 6$. True False
