Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

Reminder When z is a complex variable, the cosine function and the sine function are defined in terms of the exponential function via

$$
\cos (z)=\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \quad \text { and } \quad \sin (z)=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)
$$

1. Determine the real and imaginary parts of $\cos \left(i^{3}\right)$.
2. Show that if $f(z)=\cos (z)$, then $f^{\prime}(z)=-\sin (z)$ (as you would expect from the corresponding differentiation formula for functions of a real variable).

Complex Variables

3. Evaluate the line integral $\int_{\gamma}|z|^{2} d z$, where γ is the line segment from the point 0 to the point $1+i$.
