Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Use Cauchy's integral formula to evaluate $\int_{|z-1|=1} \frac{\cos (2 \pi z)}{z^{2}-1} d z$, where the integration path is oriented in the standard counterclockwise direction.
2. Student Kan Toor says that if γ is any smooth curve starting at the point 1 and ending at the point i (and not passing through 0), then

$$
\int_{\gamma} \frac{1}{z} d z=\log (i)-\log (1)=\frac{i \pi}{2}
$$

"I know there is an ambiguity in the value of the logarithm, but since I am taking a difference of two values, the ambiguity cancels out," says Kan Toor. Is Kan Toor's analysis correct? Explain why or why not.

Complex Variables

3. Student Ko Shi says that $\int_{\gamma} \frac{1}{z} d z=2 \pi i$, where γ is the simple closed curve indicated below.

Is Ko Shi right or wrong? Explain why.

