Quiz 1
Spring 2008

Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Determine the polar representation of the complex number $1+i$.

Solution. The modulus of $1+i$ equals $\sqrt{1^{2}+1^{2}}$ or $\sqrt{2}$, and the argument is $\pi / 4$, so the polar representation is

$$
\sqrt{2}(\cos (\pi / 4)+i \sin (\pi / 4))
$$

One could just as well replace the angle $\pi / 4$ by $9 \pi / 4$ or by $\pi / 4$ plus any integral multiple of 2π.
2. Suppose z is a complex number such that $|z|=2$ and $\arg z=-3 \pi / 2$. Express z in its standard form $x+i y$.

Solution. The polar form of z is $2(\cos (-3 \pi / 2)+i \sin (-3 \pi / 2))$. Since $-3 \pi / 2$ represents the same position as angle $\pi / 2$, and $\cos (\pi / 2)=0$, while $\sin (\pi / 2)=1$, we have $z=2 i$.
3. Every complex number z has the property that $|\operatorname{Re} z| \leq|z|$. Why?

Solution. The algebraic explanation is that

$$
|z|=\sqrt{(\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}} \geq \sqrt{(\operatorname{Re} z)^{2}}=|\operatorname{Re} z| .
$$

Equality holds in the inequality precisely when $\operatorname{Im} z=0$, that is, when z is a real number.

The geometric explanation is that $|z|$ represents the length of the hypotenuse of a right triangle, while $|\operatorname{Re} z|$ represents the length of one side of the triangle. The hypotenuse is longer than either of the other sides (unless the triangle degenerates into a line segment, in which case equality can hold).

Complex Variables

4. Suppose the complex numbers $0, z$, and w represent the vertices of an isosceles right triangle. If $z=2+i$, find a corresponding value for w. [The answer is not unique.]

Solution. One could solve the problem geometrically in real x and y coordinates and then translate the answer into complex form. Here is a solution using the notation of complex numbers. Suppose $w=a+i b$, where a and b are real numbers. The strategy is to write two equations for the two unknowns a and b, and then solve for the values of a and b.

If the right angle is at 0 , then z and w represent orthogonal vectors, so $\operatorname{Re}(z \bar{w})=0$ (see page 8 of the textbook). Therefore $2 a+b=0$, or $b=-2 a$. Since the triangle is isosceles, $|z|^{2}=|w|^{2}$, or $2^{2}+1^{2}=a^{2}+b^{2}$. Substituting $-2 a$ for b shows that $5=5 a^{2}$, or $a= \pm 1$. We get two solutions for a and b : namely, $a=1$ and $b=-2$; and $a=-1$ and $b=2$. The corresponding values of w are $1-2 i$ and $-1+2 i$.

If the right angle is at z, then $\operatorname{Re}[(w-z) \bar{z}]=0$, that is, $\operatorname{Re} w \bar{z}=|z|^{2}$, or $2 a+b=5$. For the second equation, we could use that $|z|=|w-z|$, but it is simpler to observe that $|w|$ represents the hypotenuse of the isosceles right triangle, so $|w|=\sqrt{2}|z|$. Therefore $a^{2}+b^{2}=2 \times 5=10$. The solutions of the two equations for a and b are $a=3$ and $b=-1$; and $a=1$ and $b=3$. The corresponding values of w are $3-i$ and $1+3 i$.

The remaining possibility is that the right angle is at w. Then $|w|=$ $|z| / \sqrt{2}$, or $a^{2}+b^{2}=5 / 2$. Also $|w|=|w-z|$, or $|w|^{2}=|w|^{2}-2 \operatorname{Re} w \bar{z}+$ $|z|^{2}$, or $2(2 a+b)=5$. Solving the pair of equations for a and b gives the solutions $\frac{3}{2}-\frac{1}{2} i$ and $\frac{1}{2}+\frac{3}{2} i$ for w.

