Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Circle the correct answer. No explanation is required.

1. If z_{1}, z_{2}, and z_{3} are three distinct complex numbers, then there is precisely one linear fractional transformation T such that $T\left(z_{1}\right)=1$, $T\left(z_{2}\right)=i$, and $T\left(z_{3}\right)=0$ True False

Solution. True. It is a fundamental property of the set of linear fractional transformations that there is such a transformation taking three specified points to three specified points, and moreover this transformation is unique. See pages 198-199 in the textbook.
2. If f is an analytic function in a disc centered at z_{0}, and the derivative $f^{\prime}\left(z_{0}\right) \neq 0$, then f is conformal at z_{0}. True False

Solution. True. This statement is the local characterization of conformality. See page 210 in the textbook.
3. There exists a one-to-one conformal mapping from the open first quadrant onto the open unit disc. (The open first quadrant is the set $\{z$: $\operatorname{Re}(z)>0$ and $\operatorname{Im}(z)>0\}$, and the open unit disc is $\{z:|z|<1\}$.) True False

Solution. True. The Riemann mapping theorem guarantees the existence of such a map. Moreover, we can write down a formula: since z^{2} opens out the first quadrant into the upper half plane, and the linear fractional map $\frac{z-i}{z+i}$ takes the upper half plane to the disc, the composite map $\frac{z^{2}-i}{z^{2}+i}$ does the trick. (The map does not, however, extend to be conformal on any domain containing 0 .)
4. The two curves in the $x-y$ plane defined by the equations $x^{2}-y^{2}=1$ and $2 x y=3$ intersect orthogonally. True False

Solution. True. You could solve this problem by using techniques from first-semester real calculus, but it is easier to observe that since $x^{2}-y^{2}$ and $2 x y$ are the real part and the imaginary part of the analytic function z^{2}, their level curves are orthogonal. (You did the general case for homework in exercise 15 on page 219 of the textbook.)

Complex Variables

5. The linear fractional transformation $\frac{z+2}{3 z+1}$ maps the imaginary axis (together with the point at ∞) onto a circle whose radius equals $5 / 6$. True False

Solution. True. Observe that 0 maps to 2 , and ∞ maps to $1 / 3$. Now 0 and ∞ lie on both (extended) coordinate axes, so the axes map to generalized circles that intersect at 2 and at $1 / 3$. Since the transformation has real coefficients, it maps the real axis onto the real axis. Since linear fractional transformations are conformal, the imaginary axis maps to a circle passing through 2 and $1 / 3$ that intersects the real axis orthogonally at 2 . Thus the line segment joining 2 to $1 / 3$ is a diameter of the circle. The length of the diameter is $5 / 3$, so the radius equals $5 / 6$.

