Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Circle the correct answer. No explanation is required.

1. The set of complex numbers z such that $|z-i|^{2}=4$ represents a circle in the plane.

True False

Solution. True. The equation represents a circle with center at the point i and with radius 2 .
2. The inequality $|z|+|w| \leq|z+w|$ holds for all complex numbers z and w.

True False

Solution. False. For example, if $z=1$ and $w=-1$, then the left-hand side of the inequality equals 2 , but the right-hand side equals 0 .

What is true is that $|z+w| \leq|z|+|w|$ (the triangle inequality).
3. There are exactly five complex numbers z such that $z^{5}=7-2 i$. True False

Solution. True. Every complex number (except for 0) has exactly five fifth roots. If the number has the polar representation $r e^{i \theta}$, then the fifth roots are the products of $r^{1 / 5} e^{i \theta / 5}$ with $1, e^{2 \pi i / 5}, e^{4 \pi i / 5}, e^{6 \pi i / 5}$, and $e^{8 \pi i / 5}$.
4. The set of complex numbers z such that $\operatorname{Re}\left(z^{2}\right)=0$ represents a vertical line in the plane.

True False
Solution. False. If $z=x+i y$, then $\operatorname{Re}\left(z^{2}\right)=x^{2}-y^{2}$. Therefore $\operatorname{Re}\left(z^{2}\right)=0$ if and only if $x^{2}-y^{2}=0$. The locus of points satisfying the last equation is the pair of lines $y= \pm x$.
5. An open disc in the plane is a connected set. True False

Solution. True. Every two points in an open disc can be joined by a line segment that remains inside the disc. An open disc is a convex set, and this property is stronger than connectedness.

Complex Variables

6. The set of complex numbers z such that $\operatorname{Re}(z) \geq 0$ is a closed set. True False

Solution. True. The boundary points of this set are the points for which $\operatorname{Re}(z)=0$, and all the boundary points are contained in the set.
7. The function $f(z)=\bar{z}$ is a continuous function. True False

Solution. True: $\lim _{z \rightarrow z_{0}} \bar{z}=\overline{z_{0}}$.
8. $\lim _{n \rightarrow \infty} \frac{1}{(1+i)^{n}}=0 . \quad$ True False

Solution. True. The term $1+i$ in the denominator has modulus $\sqrt{2}$, which is greater than 1 , so the denominator $(1+i)^{n}$ has modulus that grows without bound as n increases. Therefore the fraction tends to 0 .
9. There is no complex number z for which $e^{z}=0$. True False

Solution. True: this statement is a fundamental property of the exponential function. If $z=x+i y$, then $e^{z}=e^{x} e^{i y}$, and $e^{x}>0$, while $e^{i y}$ is a complex number of modulus 1. Hence e^{z} is a product of two non-zero quantities.
10. The inequality $|\sin (z)| \leq 1$ holds for every complex number z. True False

Solution. False. We saw in class that $|\sin (z)|$ blows up as z moves up the imaginary axis. Explicitly, $\sin (i y)=\frac{i}{2}\left(e^{y}-e^{-y}\right)$, so $|\sin (i y)| \rightarrow \infty$ as $y \rightarrow \infty$.

