Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

Reminder When z is a complex variable, the cosine function and the sine function are defined in terms of the exponential function via

$$
\cos (z)=\frac{1}{2}\left(e^{i z}+e^{-i z}\right) \quad \text { and } \quad \sin (z)=\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)
$$

1. Determine the real and imaginary parts of $\cos \left(i^{3}\right)$.

Solution. Substitute i^{3} for z in the definition of the cosine function:

$$
\cos \left(i^{3}\right)=\frac{1}{2}\left(e^{i^{4}}+e^{-i^{4}}\right)=\frac{1}{2}\left(e^{1}+e^{-1}\right) .
$$

Thus the imaginary part of $\cos \left(i^{3}\right)$ is equal to 0 , and the real part is equal to $\frac{1}{2}\left(e+e^{-1}\right)$, which can also be written as $\cosh (1)$.
2. Show that if $f(z)=\cos (z)$, then $f^{\prime}(z)=-\sin (z)$ (as you would expect from the corresponding differentiation formula for functions of a real variable).

Solution. You could go back to the definition of the derivative as a limit, but it is simpler to apply the chain rule as in the example of $\sin (z)$ that we worked in class. Thus

$$
\begin{aligned}
\frac{d}{d z} \cos (z) & =\frac{1}{2} \frac{d}{d z}\left(e^{i z}+e^{-i z}\right)=\frac{1}{2}\left(i e^{i z}-i e^{-i z}\right)=\frac{i}{2}\left(e^{i z}-e^{-i z}\right) \\
& =-\frac{1}{2 i}\left(e^{i z}-e^{-i z}\right)=-\sin (z) .
\end{aligned}
$$

3. Evaluate the line integral $\int_{\gamma}|z|^{2} d z$, where γ is the line segment from the point 0 to the point $1+i$.

Solution. Parametrize the curve by $z=(1+i) t$, where t goes from 0 to 1 . Then $|z|^{2}=2 t^{2}$, and $d z=(1+i) d t$, so the integral becomes $\int_{0}^{1} 2 t^{2}(1+i) d t$, or $2(1+i) \int_{0}^{1} t^{2} d t$, which evaluates to $\frac{2}{3}(1+i)$.

