Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Determine the residue of the function $\frac{4 z^{2}}{z^{9}-1}$ at the simple pole where $z=1$.

Solution. Using the formula that the residue of g / h at a simple zero z_{0} of h equals $g\left(z_{0}\right) / h^{\prime}\left(z_{0}\right)$ gives the value

$$
\left.\frac{4 z^{2}}{9 z^{8}}\right|_{z=1}, \quad \text { which equals } \quad \frac{4}{9}
$$

Alternatively, the residue could be computed as

$$
\lim _{z \rightarrow 1}\left((z-1) \cdot \frac{4 z^{2}}{z^{9}-1}\right) .
$$

2. The function $\frac{1}{z(1-z)}$ is analytic in the punctured unit disc (where $0<|z|<1$). Determine the Laurent series for this function (in powers of z and $1 / z)$ that converges in this punctured disc.

Solution. Since $\frac{1}{1-z}=1+z+z^{2}+\cdots$ when $|z|<1$ (the geometric series formula),

$$
\frac{1}{z(1-z)}=\frac{1}{z} \cdot\left(1+z+z^{2}+\cdots\right)=\frac{1}{z}+1+z+\cdots=\sum_{n=-1}^{\infty} z^{n} .
$$

Alternatively, you could use the method of partial fractions to write

$$
\frac{1}{z(1-z)}=\frac{1}{z}+\frac{1}{1-z}
$$

(the coefficients of the partial fractions decomposition happen to be particularly simple in this example) and then apply the geometric series formula to the second summand.

Complex Variables

3. Evaluate the complex line integral

$$
\int_{|z|=1} \frac{\cos (z)}{\sin (z)} d z
$$

where the integration path is the unit circle oriented in the standard counterclockwise direction.

Solution. The integrand is analytic inside the curve except for a simple pole where $z=0$, and the integral equals $2 \pi i$ times the residue of the integrand at that pole. The residue equals

$$
\left.\frac{\cos (z)}{\frac{d}{d z} \sin (z)}\right|_{z=0}, \quad \text { namely } 1
$$

so the value of the integral is $2 \pi i$.

