Complex Variables

Instructions Please write your name in the upper right-hand corner of the page. Write complete sentences to explain your solutions.

1. Find a linear fractional transformation that takes the triple of points $(0,1,2)$ onto $(1,2,3)$.

Solution. This transformation is a translation by 1 unit to the right, so you can write down the formula without any calculation: the transformation is $z \mapsto z+1$.
2. Find a linear fractional transformation that takes the triple $(1,0, \infty)$ onto $(\infty, 1,0)$.

Solution. Suppose the transformation has the general form $\frac{a z+b}{c z+d}$. Since 1 maps to ∞, we must have $c+d=0$, or $c=-d$. Since 0 maps to 1 , we have $b / d=1$, or $b=d$. Since ∞ maps to 0 , we have $a / c=0$, or $a=0$. We may take d equal to 1 , in which case $b=1$ and $c=-1$; the transformation is given by $\frac{1}{-z+1}$.
3. Find a linear fractional transformation that takes the circle centered at 0 with radius 1 onto the circle centered at 3 with radius 2 .

Solution. You can implement this transformation by first dilating by a factor of 2 and then translating 3 units to the right. Thus the transformation is $z \mapsto 2 z+3$.

