Exam 2 Complex Variables

Instructions Please write your solutions on your own paper.

These problems should be treated as essay questions. You should explain your reasoning in complete sentences.

- 1. State the following:
 - (a) Cauchy's integral formula;
 - (b) the ratio test for convergence of series of complex numbers.

Solution.

(a) If C is a simple closed curve, and the function f is analytic on and inside C, then

$$\frac{1}{2\pi i} \int_C \frac{f(z)}{z - z_0} dz = \begin{cases} f(z_0), & \text{if } z_0 \text{ is inside } C; \\ 0, & \text{if } z_0 \text{ is outside } C; \\ \text{undefined, } & \text{if } z_0 \text{ is on } C. \end{cases}$$

- (b) If $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ exists and is less than 1, then the series $\sum_{n=1}^{\infty} c_n$ converges. If $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ exists (or is $+\infty$) and is greater than 1, then the series $\sum_{n=1}^{\infty} c_n$ diverges. If $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ exists and equals 1, then the ratio test gives no information. If $\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right|$ fails to exist (by oscillation), then the ratio test gives no information.
- 2. Evaluate the integral $\frac{1}{2\pi i} \int_C \frac{\cos(3z)}{z^3} dz$ when C is the unit circle (that is, the set of points z for which |z| = 1) oriented in the usual counterclockwise direction.

Solution. Cauchy's formula for derivatives implies that if f is an entire function (or any function that is analytic on the unit disk and its boundary circle), then

$$\frac{1}{2!}f''(0) = \frac{1}{2\pi i} \int_{|z|=1} \frac{f(z)}{z^3} dz.$$

Exam 2 Complex Variables

Fall 2011

If $f(z) = \cos(3z)$, then $f''(z) = -9\cos(3z)$, so f''(0) = -9. Therefore the original expression to be evaluated equals -9/2.

3. Evaluate the integral $\int_C \frac{1}{z^2} dz$ when *C* is the indicated path that goes from the point -i to the point *i* along three sides of a square.

Solution. The function -1/z is an anti-derivative of $1/z^2$ when $z \neq 0$, so the integral can be evaluated as

$$\left(-\frac{1}{z}\right)\Big|_{z=i} - \left(-\frac{1}{z}\right)\Big|_{z=-i}$$
, which reduces to $2i$.

Alternatively, you could use the path-deformation principle to replace the integration path by a semi-circle in the right-hand half-plane. Parametrizing the new path by setting z equal to $e^{i\theta}$ converts the integral into

$$\int_{-\pi/2}^{\pi/2} \frac{1}{e^{2i\theta}} i e^{i\theta} d\theta, \quad \text{or} \quad \int_{-\pi/2}^{\pi/2} i e^{-i\theta} d\theta.$$

The new integral evaluates as $[-e^{-i\theta}]^{\pi/2}_{-\pi/2}$, which again simplifies to 2i.

4. Determine all values of the real number *b* for which the series $\sum_{n=1}^{\infty} \frac{b^n + i^n}{(b+i)^n}$ converges.

Solution. Split the series as the sum of the two geometric series

$$\sum_{n=1}^{\infty} \left(\frac{b}{b+i}\right)^n \quad \text{and} \quad \sum_{n=1}^{\infty} \left(\frac{i}{b+i}\right)^n.$$

Now *b* is a real number, so $|b+i|^2 = b^2 + 1 > b^2$, whence |b/(b+i)| < 1. Therefore the first of the two geometric series converges for every value of the real number *b*. The second of the two geometric series converges when

Exam 2 Complex Variables

|i/(b+i)| < 1, or 1 < |b+i|, or $1 < b^2 + 1$. This inequality holds for every real number *b* except 0.

Consequently, the original series converges as long as the real number b is nonzero. When b = 0, however, the original series reduces to $\sum_{n=1}^{\infty} 1$, which diverges to ∞ .

Remark By using the formula for the sum of a geometric series, you can show that the given series evaluates to (b/i) + (i/b). It is evident from this expression too that *b* cannot be allowed to take the value 0.

5. Determine the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{2 + \cos(n)}{3^n + 4^n} z^n.$$

Solution. The ratio test looks problematic, but the root test shows that the radius of convergence equals the *reciprocal* of

$$\lim_{n \to \infty} \left(\frac{2 + \cos(n)}{3^n + 4^n} \right)^{1/n}$$

(if this limit exists).

The intuitive way to compute this limit is to observe that the numerator of the fraction oscillates between definite bounds (namely, between 1 and 3), so the *n*th root of the numerator should have limit equal to 1. And the denominator is growing roughly like 4^n (since 3^n is much smaller than 4^n when *n* is large), so its *n*th root should have limit 4.

To make the argument precise, you could invoke the sandwich theorem (squeeze theorem). Namely, $1 \le 2 + \cos(n) \le 3$, and $4^n < 3^n + 4^n < 4^n + 4^n = 2 \cdot 4^n$, so

$$\frac{1}{2 \cdot 4^n} \le \frac{2 + \cos(n)}{3^n + 4^n} \le \frac{3}{4^n}.$$

Therefore

$$\frac{1}{4} \cdot \frac{1}{2^{1/n}} \le \left(\frac{2 + \cos(n)}{3^n + 4^n}\right)^{1/n} \le \frac{1}{4} \cdot 3^{1/n}.$$

October 27, 2011

Math 407

Exam 2 Complex Variables

Since both $2^{1/n} \to 1$ and $3^{1/n} \to 1$ when $n \to \infty$, it follows that

$$\lim_{n \to \infty} \left(\frac{2 + \cos(n)}{3^n + 4^n} \right)^{1/n} = \frac{1}{4}.$$

Therefore the radius of convergence of the original power series is equal to 4.

6. Show that if $\text{Im}(z) \neq 0$, then $\sin(z) \neq 0$. In other words, the only values of z in the complex plane for which $\sin(z)$ can be equal to 0 are the values on the real axis where the real sine function is equal to 0.

Solution. Since $\sin(z) = \frac{1}{2i}(e^{iz} - e^{-iz})$, the function $\sin(z)$ is equal to 0 if and only if $e^{iz} - e^{-iz} = 0$, or $e^{iz} = e^{-iz}$. Multiplying by e^{iz} yields the equivalent condition that $e^{2iz} = 1$, or $e^{2ix}e^{-2y} = 1$. Taking the modulus of both sides shows that $e^{-2y} = 1$, whence y = 0. Thus the only candidates for complex numbers *z* that make $\sin(z)$ equal to 0 are points on the *x*-axis.

Alternatively, you could write

$$\sin(z) = \sin(x + iy) = \sin(x)\cosh(y) + i\cos(x)\sinh(y).$$
(*)

Now $\cosh(y)$ is never equal to 0, and if $y \neq 0$, then $\sinh(y) \neq 0$. Moreover, the functions $\sin(x)$ and $\cos(x)$ are never simultaneously equal to 0, so the real part of (*) and the imaginary part of (*) can never be simultaneously equal to 0 when $y \neq 0$. Thus $\sin(x + iy) \neq 0$ when $y \neq 0$.

Extra credit

Viewing e^z as a transformation from the *z*-plane to the *w*-plane, find a region in the *z*-plane on which the function e^z is a one-to-one transformation onto the upper half-plane (the set of points *w* having positive imaginary part).

Solution. Write e^z as $e^x e^{iy}$ and observe that $|e^z| = e^x$ and $\arg(e^z) = y$. To cover the upper half of the *w*-plane, you need the modulus of e^z to run through all positive values and the argument of e^z to vary from 0 to π . Therefore you need *x* to run over all real values and *y* to run over all values between 0 and π . In other words, the required region in the *z*-plane is the horizontal strip $\{x + iy : x \in \mathbb{R} \text{ and } 0 < y < \pi\}$. It is evident that the function e^z is a one-to-one function on this strip, for two complex numbers are equal if and only if they have the same modulus and the same argument.