Complex Variables

Instructions Please write your solutions on your own paper.
These problems should be treated as essay questions. You should explain your reasoning in complete sentences.

1. State the following:
a) Liouville's theorem (about entire functions); and
b) Gauss's mean-value theorem (about functions analytic in a disk).
2. Evaluate the line integral $\int_{C}(z-\bar{z}) d z$ when C is the circle of radius 1 centered at 0 (oriented in the usual counterclockwise direction). [Caution: The answer is not zero!]
3. Determine the values of the complex number z for which the infinite series $\sum_{n=1}^{\infty} e^{n z}$ is convergent.
4. Evaluate $\int_{C} \frac{329 z+3 \cos (2 z)}{z^{9}} d z$ when C is the circle of radius 1 centered at 0 (oriented in the usual counterclockwise direction). [Caution: The answer is not zero!]
5. Determine the radius of convergence of the power series

$$
\sum_{n=1}^{\infty}\left(\frac{3+2 i}{9^{n}+i^{n}}\right) z^{n}
$$

6. When C is a path in the complex plane from the point -1 to the point 1 , the value of the line integral

$$
\int_{C} \frac{2}{z^{2}+1} d z
$$

depends on the choice of C. If C is the straight line segment along the real axis from -1 to 1 , then the value of this integral is π. What are the other possible values for this integral (for other choices of the path C joining -1 to 1)?

Extra credit

Show that if f is an entire function such that $|f(z)| \leq 1+|z|$ for every complex number z, then f is a polynomial of degree at most 1.

