Examination 1

Instructions Please write your solutions on your own paper. These problems should be treated as essay questions to answer in complete sentences.

1. Suppose z is a complex number such that the imaginary part of z is equal to 7 , and the imaginary part of z^{2} is equal to 56 . Determine the value of the real part of z.
2. The set of values of the complex variable z for which

$$
2|z|^{2}=|z-i|^{2}
$$

is a circle in the complex plane. Determine the radius of that circle.
3. Show that no complex number z exists for which $\tan (z)=i$.

Hint: Recall that by definition,

$$
\tan (z)=\frac{\sin (z)}{\cos (z)}
$$

4. a) State the definition of what the complex derivative $f^{\prime}(0)$ means (in terms of a limit).
b) Use the definition to show that if $f(z)=|z|^{2}$, then the complex derivative $f^{\prime}(0)$ exists.
5. Suppose $f(z)$ is an analytic function, written as usual in the form $u(x, y)+i v(x, y)$ in terms of real functions u and v.
a) State the Cauchy-Riemann equations.
b) Suppose now that $u(x, y)=2 v(x, y)$ for all values of the real variables x and y, and $u(0,0)=2$. Determine $f(z)$.
6. Determine a Möbius transformation (fractional linear transformation) that maps the three points $-1,0$, and 1 to the image points $0,-1$, and 1 (in that order).

Extra Credit

Zed and Zee have a debate about the value of $\lim _{z \rightarrow 0} z^{z}$, where z is a complex variable. Zed says, " 0 raised to any power equals 0 , so the answer must be 0 ." Zee says, "Any number raised to the power 0 equals 1 , so the answer must be $1 . "$
Do you agree with either Zed or Zee? What do you think about the value of this limit? Explain your reasoning.

