Complex Variables

Instructions Please write your solutions on your own paper.
These problems should be treated as essay questions. You should explain your reasoning in complete sentences.

1. State the following:
a) Euler's formula (relating the exponential and trigonometric functions); and
b) the power series expansion for $\sin (z)$ (centered at 0).
2. Determine the smallest positive integer n such that

$$
(\sqrt{3}+i)^{n}=(1+i \sqrt{3})^{n}
$$

3. The set of all complex numbers z such that

$$
\operatorname{Re}\left(\frac{1-z}{1+z}\right)=1
$$

can be represented in the plane as a certain curve. What curve is it?
Caution: The real part of a quotient is not equal to the quotient of the real parts!
4. Let $f(z)$ denote an analytic function with real part $u(x, y)$ and imaginary part $v(x, y)$. Determine $f(z)$ if

$$
\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2} \quad \text { and } \quad \frac{\partial v}{\partial x}=6 x y+1 \quad \text { and } \quad f(0)=0
$$

5. Evaluate the limit

$$
\lim _{z \rightarrow 0}(\cos z)^{1 / z^{2}}
$$

(using the principal branch of the logarithm).
6. The hyperbolic tangent function, tanh, can be defined as follows:

$$
\tanh (z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
$$

For which values of the complex variable z is $\tanh (z)$ not analytic? In other words, what are the singular points of the hyperbolic tangent function?

Extra credit

Creatures from the galaxy Mocplex say that a function $u(x, y)$ is morhanic if

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0
$$

Are there any nonconstant analytic functions that have morhanic real part?

